Skip to main content

Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays

  • Chapter

Part of the Advances in Solid State Physics book series (ASSP,volume 46)

Abstract

ZnO and Zn0.98Mg0.02O nanowires have been grown by high-pressure pulsed laser deposition on sapphire substrates covered with gold colloidal particles as nucleation sites. We present a detailed study of the nanowire size and length distribution and of the growth evolution. We find that the aspect ratio varies linearly with deposition time. The linearity coefficient is independent of the catalytic gold particle size and lateral nanowire density. The superior structural quality of the whiskers is proven by X-ray diffraction and transmission electron microscopy. The defect-free ZnO nanowires exhibit a FWHM(2θ-ω) of the ZnO(0002) reflection of 22 arcsec. We show (0–11) step habit planes on the side faces of the nanowires that are a few atomic steps in height. The microscopic homogeneity of the optical properties is confirmed by temperature-dependent cathodoluminescence.

Keywords

  • Pulse Laser Deposition
  • Nanowire Array
  • Atomic Step
  • Gold Colloidal Particle
  • Excessive Length

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-38235-5_9
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-38235-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Klingshirn, M. Grundmann, A. Hoffmann, B. Meyer, A. Waag, Physik-Journal 5(1), 33 (2006)

    Google Scholar 

  2. S.C. Minne, S.R. Manalis, C.F. Quate, Appl. Phys. Lett. 67, 3918 (1995)

    CrossRef  ADS  Google Scholar 

  3. Th. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, M. Grundmann, Phys. Rev. Lett. 93, 103903 (2004)

    CrossRef  ADS  Google Scholar 

  4. Z. L. Wang, J.Phys.: Condens. Matter 16, R829 (2004)

    CrossRef  ADS  Google Scholar 

  5. P. A. Hu, Y. Q. Liu, L. Fu, X. B. Wang, D. B. Zhu, Appl. Phys. A 80, 35 (2005)

    CrossRef  ADS  Google Scholar 

  6. H. Yan, R. He, J. Pham, P. Yang, Adv. Mater. 15, 402 (2003)

    CrossRef  Google Scholar 

  7. W. I. Park, G. Yi, M. Kim, S. J. Pennycook, Adv. Mater. 14, 1841 (2002)

    CrossRef  Google Scholar 

  8. X. Gao, X. Li, W. Yu, J. Phys. Chem. B 109, 1155 (2005)

    CrossRef  Google Scholar 

  9. M. Lorenz, E. M. Kaidashev, A. Rahm, Th. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 86, 143113 (2005)

    CrossRef  ADS  Google Scholar 

  10. H. J. Fan, W. Lee, R. Hausschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, U. Gösele, Small 2, 561 (2006)

    CrossRef  Google Scholar 

  11. M. Lorenz, E. M. Kaidashev, H. v. Wenckstern, V. Riede, C. Bundesmann, D. Spemann, G. Benndorf, H. Hochmuth, A. Rahm, H.-C. Semmelhack, M. Grundmann, Solid State Electronics 47, 2205 (2003)

    CrossRef  ADS  Google Scholar 

  12. M. A. Wood, M. Riehle, C. D. W. Wilkinson, Nanotechnology 13, 605 (2002)

    CrossRef  ADS  Google Scholar 

  13. M. Lorenz, J. Lenzner, E. M. Kaidashev, H. Hochmuth, M. Grundmann, Ann. Phys. (Leipzig) 13, 39 (2004)

    CrossRef  ADS  Google Scholar 

  14. Th. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, J. Lenzner, M. Grundmann, Nano Lett. 4, 797 (2004)

    CrossRef  ADS  Google Scholar 

  15. A. Rahm, M. Lorenz, Th. Nobis, G. Zimmermann, M. Grundmann, B. Fuhrmann, F. Syrowatka, Appl. Phys. A, in press

    Google Scholar 

  16. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998)

    CrossRef  ADS  Google Scholar 

  17. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett. 80, 1529 (2002)

    CrossRef  ADS  Google Scholar 

  18. A. P. Levitt (Ed.), Whisker Technology, (Wiley-Interscience, New York, 1970)

    Google Scholar 

  19. E. M. Kaidashev, M. Lorenz, H. v. Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003)

    CrossRef  ADS  Google Scholar 

  20. J.B. Baxter, F. Wu, E.S. Aydil, Appl. Phys. Lett. 83, 3797 (2003)

    CrossRef  ADS  Google Scholar 

  21. B. K. Meyer, H. Alves, D.M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, A.V. Rodina, Phys. Stat. Sol. (B) 241, 231 (2004)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahm, A. et al. (2008). Growth Evolution and Characterization of PLD Zn(Mg)O Nanowire Arrays. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_9

Download citation