Skip to main content

Novel Quantum Transport Effects in Single-Molecule Transistors

  • Chapter
  • 1097 Accesses

Part of the Advances in Solid State Physics book series (ASSP,volume 46)

Abstract

Transport through single molecules differs from transport through more conventional nanostructures such as quantum dots by the coupling to few well-defined vibrational modes. A well-known consequence of this coupling is the appearance of vibrational side bands in the current-voltage characteristics. We have recently shown that the coupling to vibrational modes can lead to new quantum transport effects for two reasons. (i) When vibrational equilibration rates are sufficiently slow, the transport current can drive the molecular vibrations far out of thermal equilibrium. In this regime, we predict for strong electron-phonon coupling that electrons pass the molecule in avalanches of large numbers of electrons. These avalanches consist themselves of smaller avalanches, interrupted by long waiting times, and so on. This self-similar avalanche transport is reflected in exceptionally large current (shot) noise, as measured by the Fano factor, as well as a power-law frequency spectrum of the noise. (ii) Due to polaronic energy shifts, the effective charging energy of molecules may be strongly reduced compared to the pure Coulomb charging energy. In fact, for certain molecules the effective charging energy U can become negative, a phenomenon known in chemistry as potential inversion. We predict that transport through such negative-U molecules near charge-degeneracy points, where the Coulomb blockade is lifted, is dominated by tunnelling of electron pairs. We show that the dependence of the corresponding Coulomb-blockade peaks on temperature and bias voltage is characteristic of the reduced phase space for pair tunnelling.

Keywords

  • High Occupied Molecular Orbital
  • Lower Unoccupied Molecular Orbital
  • Gate Voltage
  • Charge Energy
  • Molecular Vibration

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-38235-5_8
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-38235-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Reed and J. M. Tour, Sci. Am. 282, 86 (2000).

    CrossRef  Google Scholar 

  2. C. Joachim, J. K. Gimzewski, and A. Aviram, Nature (London) 408, 541 (2000).

    CrossRef  ADS  Google Scholar 

  3. J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).

    CrossRef  ADS  Google Scholar 

  4. C. Zhou, C. J. Muller, M. R. Deshpande, J. W. Sleight, and M. A. Reed, Appl. Phys. Lett. 67, 1160 (1995).

    CrossRef  ADS  Google Scholar 

  5. J. M. van Ruitenbeek, A. Alvarez, I. Pineyro, C. Grahmann, P. Joyez, M. H. Devoret, D. Esteve, and C. Urbina, Rev. Sci. Instrum. 67, 108 (1996).

    CrossRef  ADS  Google Scholar 

  6. H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, Appl. Phys. Lett. 75, 301 (1999).

    CrossRef  ADS  Google Scholar 

  7. T. Dadosh, Y. Gordin, R. Krahne, I. Khivrich, D. Mahalu, V. Frydman, J. Sperling, A. Yacoby, and I. Bar-Joseph, Nature (London) 436, 677 (2005).

    CrossRef  ADS  Google Scholar 

  8. L. Grüter, F. Cheng, T. T. Heikkil. T. Gonzalez, F. Diederich, C. Schönenberger, and M. Calame, Nanotechnology 16, 2143 (2005).

    CrossRef  ADS  Google Scholar 

  9. X. H. Qiu, G. V. Nazin, and W. Ho, Phys. Rev. Lett. 92, 206102 (2004).

    CrossRef  ADS  Google Scholar 

  10. J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abrunas, P. L. McEuen, and D. C. Ralph, Nature (London) 417, 722 (2002).

    CrossRef  ADS  Google Scholar 

  11. L. H. Yu and D. Natelson, Nano Lett. 4, 79 (2004).

    CrossRef  ADS  Google Scholar 

  12. R. C. Jaklevic and J. Lambe, Phys. Rev. Lett. 17, 1139 (1966).

    CrossRef  ADS  Google Scholar 

  13. L. I. Glazman and R. I. Shekhter, Sov. Phys. JETP 67, 163 (1988).

    Google Scholar 

  14. N. S. Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys. Rev. Lett. 61, 1396 (1988).

    CrossRef  ADS  Google Scholar 

  15. H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature 407, 57 (2000).

    CrossRef  ADS  Google Scholar 

  16. R. H.M. Smit, Y. Noat, C. Untiedt, N. D. Lang, M. C. van Hemert, and J.M. van Ruitenbeek, Nature 419, 906 (2002).

    CrossRef  ADS  Google Scholar 

  17. M. Galperin, M. A. Ratner, and A. Nitzan, J. Chem. Phys. 121, 11965 (2004).

    CrossRef  ADS  Google Scholar 

  18. B. LeRoy, S. Lemay, J. Kong, and C. Dekker, Nature 432, 371 (2004).

    CrossRef  ADS  Google Scholar 

  19. A. Mitra, I. Aleiner, and A. J. Millis, Phys. Rev. B 69, 245302 (2004).

    CrossRef  ADS  Google Scholar 

  20. J. Koch, M. Semmelhack, F. von Oppen, and A. Nitzan, Phys. Rev. B 73, 155306 (2006).

    CrossRef  ADS  Google Scholar 

  21. Y. Xue and M. A. Ratner, Phys. Rev. B 68, 115407 (2003).

    CrossRef  ADS  Google Scholar 

  22. F. Evers, F. Weigend, and M. Koentopp, Phys. Rev. B 69, 235411 (2004).

    CrossRef  ADS  Google Scholar 

  23. K. Burke, R. Car, and R. Gebauer, cond-mat/0410352 (2004).

    Google Scholar 

  24. S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, and E. K. U. Gross, Phys. Rev. B 72, 035308 (2005).

    CrossRef  ADS  Google Scholar 

  25. S. Braig and K. Flensberg, Phys. Rev. B 68, 205324 (2003).

    CrossRef  ADS  Google Scholar 

  26. I. G. Lang and Y. A. Firsov, Sov. Phys. JETP 16, 1301 (1963).

    ADS  Google Scholar 

  27. H. Grabert and M. H. Devoret, eds., Single Charge Tunneling in Coulomb Blockade Phenomena in Nanostructures (Plenum Press, New York and London, 1992).

    Google Scholar 

  28. C. W. J. Beenakker, Phys. Rev. B 44 (1646).

    Google Scholar 

  29. D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 44, 6199 (1991).

    CrossRef  ADS  Google Scholar 

  30. J. Koch and F. von Oppen, Phys. Rev. Lett. 94, 206804 (2005).

    CrossRef  ADS  Google Scholar 

  31. F. Elste and C. Timm, Phys. Rev. B 71, 155403 (2005).

    CrossRef  ADS  Google Scholar 

  32. J. Paaske and K. Flensberg, Phys. Rev. Lett. 94, 176801 (2005).

    CrossRef  ADS  Google Scholar 

  33. S. Gao, M. Persson, and B. I. Lundqvist, Phys. Rev. B 55, 4825 (1997).

    CrossRef  ADS  Google Scholar 

  34. Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).

    CrossRef  ADS  Google Scholar 

  35. J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 95, 056801 (2005).

    CrossRef  ADS  Google Scholar 

  36. D. Segal and A. Nitzan, J. Chem. Phys. 117, 3915 (2002).

    CrossRef  ADS  Google Scholar 

  37. D. Segal, A. Nitzan, and P. Hänggi, J. Chem. Phys. 119, 6840 (2003).

    CrossRef  ADS  Google Scholar 

  38. J. Koch, F. von Oppen, Y. Oreg, and E. Sela, Phys. Rev. B 70, 195107 (2004).

    CrossRef  ADS  Google Scholar 

  39. J. Koch and F. von Oppen, Phys. Rev. B 72, 113308 (2005).

    CrossRef  ADS  Google Scholar 

  40. M. R. Wegewijs and K. C. Nowack, New J. Phys. 7, 239 (2005).

    CrossRef  ADS  Google Scholar 

  41. C. Kraiya and D. H. Evans, J. Electroanal. Chem. 565, 29 (2004), and references therein.

    CrossRef  Google Scholar 

  42. A. Taraphder and P. Coleman, Phys. Rev. Lett. 66, 2814 (1991).

    CrossRef  ADS  Google Scholar 

  43. P. S. Cornaglia, H. Ness, and D. R. Grempel, Phys. Rev. Lett. 93, 147201 (2004).

    CrossRef  ADS  Google Scholar 

  44. L. Arrachea and M. J. Rozenberg, Phys. Rev. B 72, 041301(R) (2005).

    ADS  Google Scholar 

  45. J. Koch, M. E. Raikh, and F. von Oppen, Phys. Rev. Lett. 96, 056803 (2006).

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Oppen, F., Koch, J. (2008). Novel Quantum Transport Effects in Single-Molecule Transistors. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_8

Download citation