Skip to main content

GaInAs/AlAsSb Quantum Cascade Lasers: A New Approach towards 3-to-5 μm Semiconductor Lasers

  • Chapter
  • 1103 Accesses

Part of the Advances in Solid State Physics book series (ASSP,volume 46)

Abstract

At present GaInAs/AlInAs based quantum cascade (QC) lasers represent the state-of-the-art with respect to the short-wavelength (< 5 μm) performance of the QC laser concept. This performance, however, is intrinsically limited by the available conduction band offset of 0.5–0.7 eV, thus motivating research on materials combinations with larger band offsets, such as GaN/AlN and InAs/AlSb. A particularly attractive materials combination is GaInAs/AlAsSb grown lattice-matched on InP. It offers a Γ-point conduction band offset of ∼ 1.6 eV, while the mature growth and processing technologies available for InP-based lasers can be used and the favorable properties of InP as a waveguide cladding material can be exploited. In this paper recent advances in GaInAs/AlAsSb QC laser research will be reviewed, leading to a maximum pulsed operating temperature of > 400K for devices emitting at 4.6 μm and an impressive maximum peak output power of 8W at 77K (corresponding to a total power efficiency of 23 %) for a QC laser emitting at 3.7 μm. Furthermore, current limitations of the GaInAs/AlAsSb QC laser concept and challenges for future research are discussed.

Keywords

  • Quantum Cascade Laser
  • Material Combination
  • Molecular Beam Epitaxy Growth
  • Threshold Current Density
  • Growth Interruption

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-38235-5_17
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-38235-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, A. Y. Cho, Science 264, 553 (1994).

    CrossRef  ADS  Google Scholar 

  2. J. G. Kim, L. Shterengas, R. U. Martinelli, G. L. Belenky, D. Z. Garbuzov, W. K. Chan, Appl. Phys. Lett. 81, 3146 (2002).

    CrossRef  ADS  Google Scholar 

  3. E. P. O’Reilly and A. Adams, IEEE J. Quantum Electron. 30, 366 (1994).

    CrossRef  ADS  Google Scholar 

  4. C. Sirtori, H. Page, C. Becker, V. Ortiz, IEEE J. Quantum Electron. 38, 547 (2002).

    CrossRef  ADS  Google Scholar 

  5. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, Appl. Phys. Lett. 72, 680 (1998).

    CrossRef  ADS  Google Scholar 

  6. J. S. Yu, A. Evans, S. Slivken, S. R. Darvish, M. Razeghi, IEEE Photonics Technol. Lett. 17, 1154 (2005).

    CrossRef  ADS  Google Scholar 

  7. A. Evans, J. S. Yu, S. Slivken, M. Razeghi, Appl. Phys. Lett. 85, 2166 (2004).

    CrossRef  ADS  Google Scholar 

  8. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, M. Razeghi, Appl. Phys. Lett. 87, 041104 (2005).

    CrossRef  ADS  Google Scholar 

  9. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002).

    CrossRef  ADS  Google Scholar 

  10. J. S. Yu, S. Slivken, A. Evans, S. R. Darvish, J. Nguyen, M. Razeghi, Appl. Phys. Lett. 88, 091113 (2006).

    CrossRef  ADS  Google Scholar 

  11. A. Friedrich, G. Scarpa, G. Boehm, M.-C. Amann, Electron. Lett. 40, 1416 (2004).

    CrossRef  Google Scholar 

  12. D. Hofstetter, M. Beck, T. Aellen, J. Faist, Appl. Phys. Lett. 78, 396 (2001).

    CrossRef  ADS  Google Scholar 

  13. R. Köhler, C. Gmachl, A. Tredicucci, F. Capasso, D. L. Sivco, S. N. G. Chu, A. Y. Cho, Appl. Phys. Lett. 76, 1092 (2000).

    CrossRef  ADS  Google Scholar 

  14. N. Ulbrich, G. Scarpa, A. Sigl, J. Roßkopf, G. Böhm, G. Abstreiter, M.-C. Amann, Electron. Lett. 37, 1341 (2002).

    CrossRef  Google Scholar 

  15. Q. Yang, Ch. Mann, F. Fuchs, R. Kiefer, K. Köhler, N. Rollbühler, H. Schneider, J. Wagner, Appl. Phys. Lett. 80, 2048 (2002).

    CrossRef  ADS  Google Scholar 

  16. Q. Yang, Ch. Mann, F. Fuchs, K. Köhler, W. Bronner, J. Crystal Growth 278, 714 (2005).

    CrossRef  ADS  Google Scholar 

  17. M. P. Semtsiv, M. Ziegler, S. Dressler, W. T. Masselink, N. Georgiev, T. Dekorsy, M. Helm, Appl. Phys. Lett. 85, 1478 (2004).

    CrossRef  ADS  Google Scholar 

  18. C. Gmachl, H. M. Ng, A. Y. Cho, Appl. Phys. Lett. 77, 334 (2000).

    CrossRef  ADS  Google Scholar 

  19. C. Gmachl, H. M. Ng, S. N. G. Chu, A. Y. Cho, Appl. Phys. Lett. 77, 3722 (2000).

    CrossRef  ADS  Google Scholar 

  20. C. Gmachl, H. M. Ng, A. Y. Cho, Appl. Phys. Lett. 79, 1590 (2001).

    CrossRef  ADS  Google Scholar 

  21. D. Hofstetter, L. Diehl, J. Faist, W. J. Schaff, J. Hwang, L. F. Eastman, C. Zellweger, Appl. Phys. Lett. 80, 2991 (2002).

    CrossRef  ADS  Google Scholar 

  22. D. Hofstetter S. S. Schad, H. Wu, W. J. Schaff, L. F. Eastman, Appl. Phys. Lett. 83, 572 (2003).

    CrossRef  ADS  Google Scholar 

  23. D. Hofstetter, E. Baumann, F. R. Giorgetta, M. Graf, M. Maier, F. Guillot, E. Bellet-Amalric, E. Monroy, Appl. Phys. Lett. 88, 121112 (2006).

    CrossRef  ADS  Google Scholar 

  24. C. Becker, I. Prevot, X. Marcadet, B. Vinter, C. Sirtori, Appl. Phys. Lett. 78, 1029 (2001).

    CrossRef  ADS  Google Scholar 

  25. R. Teissier, D. Barate, A. Vicet, D. A. Yarekha, C. Alibert, A. N. Baranov, X. Marcadet, M. Garcia, C. Sirtori, Electron. Lett. 39, 1253 (2003).

    CrossRef  Google Scholar 

  26. R. Teissier, D. Barate, A. Vicet, C. Alibert, A. N. Baranov, X. Marcadet, C. Renard, M. Garcia, C. Sirtori, D. Revin, J. Cockburn, Appl. Phys. Lett. 85, 167 (2004).

    CrossRef  ADS  Google Scholar 

  27. K. Ohtani and H. Ohno, Jpn. J. Appl. Phys. Part 2, 41, L1279 (2002).

    CrossRef  ADS  Google Scholar 

  28. K. Ohtani and H. Ohno, Appl. Phys. Lett. 82, 1003 (2003).

    CrossRef  ADS  Google Scholar 

  29. K. Ohtani, K. Fujita, H. Ohno, Appl. Phys. Lett. 87, 211113 (2005).

    CrossRef  ADS  Google Scholar 

  30. N. Georgiev and T. Mozume, J. Appl. Phys. 89, 1064 (2001).

    CrossRef  ADS  Google Scholar 

  31. D. G. Revin, L. R. Wilson, E. A. Zibik, R. P. Green, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, Appl. Phys. Lett. 84, 1447 (2004).

    CrossRef  ADS  Google Scholar 

  32. D. G. Revin, M. J. Steer, L. R. Wilson, R. J. Airey, J. W. Cockburn, E. A. Zibik, R. P. Green, Electron. Lett. 40, 874 (2004).

    CrossRef  Google Scholar 

  33. D. G. Revin, L. R. Wilson, E. A. Zibik, R. P. Green, J. W. Cockburn, M. J. Steer, R. J. Airey, M. Hopkinson, Appl. Phys. Lett. 85, 3992 (2004).

    CrossRef  ADS  Google Scholar 

  34. Q. Yang, C. Manz, W. Bronner, K. Köhler, J. Wagner, Electron. Lett. 40, 1339 (2004).

    CrossRef  Google Scholar 

  35. Q. Yang, C. Manz, W. Bronner, Ch. Mann, L. Kirste, K. Köhler, J. Wagner, Appl. Phys. Lett. 86, 131107 (2005).

    CrossRef  ADS  Google Scholar 

  36. Q. Yang, C. Manz, W. Bronner, K. Köhler, J. Wagner, Appl. Phys. Lett. 88, 121127 (2006).

    CrossRef  ADS  Google Scholar 

  37. Q. Yang, W. Bronner, C. Manz, B. Raynor, H. Menner, Ch Mann, K. Köhler, J. Wagner (to be published in Appl. Phys. Lett., 2006).

    Google Scholar 

  38. Q. Yang, C. Manz, W. Bronner, L. Kirste, K. Köhler, J. Wagner, Appl. Phys. Lett. 86, 131109 (2005).

    CrossRef  ADS  Google Scholar 

  39. Q. Yang, W. Bronner, C. Manz, R. Moritz, Ch. Mann, G. Kaufel, K. Köhler, J. Wagner, IEEE Photon. Technol. Lett. 17, 2283 (2005).

    CrossRef  ADS  Google Scholar 

  40. N. Georgiev and T. Mozume, Appl. Phys. Lett. 75, 2371 (1999).

    CrossRef  ADS  Google Scholar 

  41. N. Georgiev and T. Mozume, J. Cryst. Growth 209, 247 (2000).

    CrossRef  ADS  Google Scholar 

  42. C. Manz, Q. Yang, K. Köhler, M. Maier, L. Kirste, J. Wagner, W. Send, D. Gerthsen, J. Crystal Growth 280, 75 (2005).

    CrossRef  ADS  Google Scholar 

  43. The X-valley position in the AlAsSb barrier has been determined by photoluminescence (unpublished result).

    Google Scholar 

  44. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    CrossRef  ADS  Google Scholar 

  45. J. Feldmann, J. Nunnenkamp, G. Peter, E. Göbel, J. Kuhl, K. Ploog, P. Dawson, C. T. Foxon, Phys. Rev. B 42, 5809 (1990).

    CrossRef  ADS  Google Scholar 

  46. C. Sirtori, F. Capasso, J. Faist, S. Scandolo, Phys. Rev. B 50, 8663 (1994).

    CrossRef  ADS  Google Scholar 

  47. J. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, Appl. Phys. Lett. 68, 3680 (1996).

    CrossRef  ADS  Google Scholar 

  48. C. Sirtori, F. Capasso, J. Faist, D. L. Sivco, S. N. G. Chu, A. Y. Cho, Appl. Phys. Lett. 61, 898 (1992).

    CrossRef  ADS  Google Scholar 

  49. J. S. Yu, S. R. Darvish, A. Evans, J. Nguyen, S. Slivken, M. Razeghi, Appl. Phys. Lett. 88, 041111, (2006).

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yang, Q., Manz, C., Bronner, W., Mann, C., Köhler, K., Wagner, J. (2008). GaInAs/AlAsSb Quantum Cascade Lasers: A New Approach towards 3-to-5 μm Semiconductor Lasers. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_17

Download citation