Skip to main content

Decoherence of Fermions Subject to a Quantum Bath

  • Chapter

Part of the Advances in Solid State Physics book series (ASSP,volume 46)

Abstract

The destruction of quantum-mechanical phase coherence by a fluctuating quantum bath has been investigated mostly for a single particle. However, for electronic transport through disordered samples and mesoscopic interference setups, we have to treat a many-fermion system subject to a quantum bath. Here, we review a novel technique for treating this situation in the case of ballistic interferometers, and discuss its application to the electronic Mach-Zehnder setup. We use the results to bring out the main features of decoherence in a many-fermion system and briefly discuss the same ideas in the context of weak localization.

Keywords

  • Shot Noise
  • Weak Localization
  • Zehnder Interferometer
  • Pauli Blocking
  • Classical Noise

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-38235-5_13
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-38235-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Joos et al.: Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Heidelberg, 2003)

    Google Scholar 

  2. W. H. Zurek: Decoherence and the transition from quantum to classical, Phys. Today 44, 36 (1991)

    CrossRef  Google Scholar 

  3. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996)

    Google Scholar 

  4. U. Weiss: Quantum Dissipative Systems (World Scientific, Singapore, 2000)

    Google Scholar 

  5. A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger: Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1–85 (1987)

    CrossRef  ADS  Google Scholar 

  6. C. H. Bennett, D. P. DiVincenzo: Quantum information and computation, Nature 404, 247–255 (2000)

    CrossRef  ADS  Google Scholar 

  7. C. W. J. Beenakker, H. van Houten: Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1–228 (1991)

    CrossRef  Google Scholar 

  8. A. Stern, Y. Aharonov, Y. Imry: Phase uncertainty and loss of interference: A general picture, Phys. Rev. A 41, 3436–3448 (1990)

    CrossRef  ADS  Google Scholar 

  9. D. Loss, K. Mullen: Dephasing by a dynamic asymmetric environment, Phys. Rev. B 43, 13252 (1991)

    CrossRef  ADS  Google Scholar 

  10. Y. Imry: Introduction to Mesoscopic Physics, 2nd ed. (Oxford University Press, 2002)

    Google Scholar 

  11. R. P. Feynman, F. L. Vernon: The theory of a general quantum mechanical system interacting with a linear dissipative system, Ann. Phys. (NY) 24, 118–173 (1963)

    CrossRef  ADS  MathSciNet  Google Scholar 

  12. A. H. C. Neto, C. D. Chamon, C. Nayak: Open Luttinger liquids, Phys. Rev. Lett. 79, 4629 (1997)

    CrossRef  ADS  Google Scholar 

  13. P. Cedraschi, V. V. Ponomarenko, M. Büttiker: Zero-point fluctuations and the quenching of the persistent current in normal metal rings, Phys. Rev. Lett. 84, 346–349 (2000)

    CrossRef  ADS  Google Scholar 

  14. F. Marquardt, C. Bruder: Aharonov-Bohm ring with fluctuating flux, Phys. Rev. B 65, 125315 (2002)

    CrossRef  ADS  Google Scholar 

  15. F. Marquardt, C. Bruder: Dephasing in sequential tunneling through a double-dot interferometer, Phys. Rev. B 68, 195305 (2003)

    CrossRef  ADS  Google Scholar 

  16. F. Marquardt, D. S. Golubev: Relaxation and dephasing in a many-fermion generalization of the caldeira-leggett model, Phys. Rev. Lett. 93, 130404 (2004)

    CrossRef  ADS  Google Scholar 

  17. F. Marquardt, D. S. Golubev: Many-fermion generalization of the Caldeira-Leggett model, Phys. Rev. A 72, 022113 (2005)

    CrossRef  ADS  MathSciNet  Google Scholar 

  18. F. Marquardt: Fermionic Mach-Zehnder interferometer subject to a quantum bath, Europhys. Lett. 72, 788 (2005)

    CrossRef  ADS  MathSciNet  Google Scholar 

  19. Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman: An electronic Mach-Zehnder interferometer, Nature 422, 415 (2003)

    CrossRef  ADS  Google Scholar 

  20. I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky: Unexpected behavior in a two-path electron interferometer, Phys. Rev. Lett. 96, 016804 (2006)

    CrossRef  ADS  Google Scholar 

  21. G. Seelig, M. Büttiker: Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer, Phys. Rev. B 64, 245313 (2001)

    CrossRef  ADS  Google Scholar 

  22. F. Marquardt, C. Bruder: Influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer, Phys. Rev. Lett. 92, 056805 (2004)

    CrossRef  ADS  Google Scholar 

  23. F. Marquardt, C. Bruder: Effects of dephasing on shot noise in an electronic Mach-Zehnder interferometer, Phys. Rev. B 70, 125305 (2004)

    CrossRef  ADS  Google Scholar 

  24. H. Förster, S. Pilgram, M. Büttiker: Decoherence and full counting statistics in a Mach-Zehnder interferometer, Phys. Rev. B 72, 075301 (2005)

    CrossRef  ADS  Google Scholar 

  25. S. Pilgram, P. Samuelsson, H. Förster, M. Büttiker: Full counting statistics for voltage and dephasing probes, cond-mat/0512276

    Google Scholar 

  26. F. Marquardt: Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath, cond-mat/0604458 (2006)

    Google Scholar 

  27. A. O. Caldeira, A. J. Leggett: Path integral approach to quantum Brownian motion, Physica 121A, 587 (1983)

    ADS  MathSciNet  Google Scholar 

  28. Ya. M. Blanter, M. Büttiker: Shot noise in mesoscopic conductors, Phys. Rep. 336, 1 (2000)

    CrossRef  ADS  Google Scholar 

  29. B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky: Effects of electron-electron collisions with small energy transfers on quantum localization, J. Phys. C Solid State 15, 7367 (1982)

    CrossRef  ADS  Google Scholar 

  30. S. Chakravarty, A. Schmid: Weak localization: The quasiclassical theory of electrons in a random potential, Phys. Rep. 140, 195 (1986)

    CrossRef  ADS  Google Scholar 

  31. H. Fukuyama, E. Abrahams: Inelastic scattering time in two-dimensional disordered metals, Phys. Rev. B 27, 5976 (1983)

    CrossRef  ADS  Google Scholar 

  32. I. Aleiner, B. L. Altshuler, M. E. Gershenzon: Interaction effects and phase relaxation in disordered systems, Waves in Random Media 9, 201 (1999) [condmat/9808053]

    MATH  CrossRef  ADS  MathSciNet  Google Scholar 

  33. F. Marquardt, J. v. Delft, R. Smith, V. Ambegaokar: Decoherence in weak localization I: Pauli principle in influence functional, cond-mat/0510556

    Google Scholar 

  34. J. v. Delft, F. Marquardt, R. Smith, V. Ambegaokar: Decoherence in weak localization II: Bethe-Salpeter calculation of Cooperon, cond-mat/0510557; J. v. Delft: Influence functional for decoherence of interacting electrons in disordered conductors, cond-mat/0510563

    Google Scholar 

  35. D. S. Golubev, A. D. Zaikin: Quantum decoherence and weak localization at low temperatures, Phys. Rev. B 59, 9195 (1999)

    CrossRef  ADS  Google Scholar 

  36. In contrast, the decoherence rate given in Ref. [35] is equal to that obtained for a single particle, with f = 0 in our formula, thus saturating at T = 0. We should note that the authors of Ref. [35] disagree with our conclusions, see their comment: D. S. Golubev and A. D. Zaikin, cond-mat/0512411.

    Google Scholar 

  37. W. Eiler: Electron-electron interaction and weak localization, J. Low Temp. Phys. 56, 481 (1984)

    CrossRef  ADS  Google Scholar 

  38. D. Cohen, Y. Imry: Dephasing at low temperatures, Phys. Rev. B 59, 11143 (1999)

    CrossRef  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marquardt, F. (2008). Decoherence of Fermions Subject to a Quantum Bath. In: Advances in Solid State Physics. Advances in Solid State Physics, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-38235-5_13

Download citation