E. Joos et al.: Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, Heidelberg, 2003)
Google Scholar
W. H. Zurek: Decoherence and the transition from quantum to classical, Phys. Today 44, 36 (1991)
CrossRef
Google Scholar
K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996)
Google Scholar
U. Weiss: Quantum Dissipative Systems (World Scientific, Singapore, 2000)
Google Scholar
A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, W. Zwerger: Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1–85 (1987)
CrossRef
ADS
Google Scholar
C. H. Bennett, D. P. DiVincenzo: Quantum information and computation, Nature 404, 247–255 (2000)
CrossRef
ADS
Google Scholar
C. W. J. Beenakker, H. van Houten: Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1–228 (1991)
CrossRef
Google Scholar
A. Stern, Y. Aharonov, Y. Imry: Phase uncertainty and loss of interference: A general picture, Phys. Rev. A 41, 3436–3448 (1990)
CrossRef
ADS
Google Scholar
D. Loss, K. Mullen: Dephasing by a dynamic asymmetric environment, Phys. Rev. B 43, 13252 (1991)
CrossRef
ADS
Google Scholar
Y. Imry: Introduction to Mesoscopic Physics, 2nd ed. (Oxford University Press, 2002)
Google Scholar
R. P. Feynman, F. L. Vernon: The theory of a general quantum mechanical system interacting with a linear dissipative system, Ann. Phys. (NY) 24, 118–173 (1963)
CrossRef
ADS
MathSciNet
Google Scholar
A. H. C. Neto, C. D. Chamon, C. Nayak: Open Luttinger liquids, Phys. Rev. Lett. 79, 4629 (1997)
CrossRef
ADS
Google Scholar
P. Cedraschi, V. V. Ponomarenko, M. Büttiker: Zero-point fluctuations and the quenching of the persistent current in normal metal rings, Phys. Rev. Lett. 84, 346–349 (2000)
CrossRef
ADS
Google Scholar
F. Marquardt, C. Bruder: Aharonov-Bohm ring with fluctuating flux, Phys. Rev. B 65, 125315 (2002)
CrossRef
ADS
Google Scholar
F. Marquardt, C. Bruder: Dephasing in sequential tunneling through a double-dot interferometer, Phys. Rev. B 68, 195305 (2003)
CrossRef
ADS
Google Scholar
F. Marquardt, D. S. Golubev: Relaxation and dephasing in a many-fermion generalization of the caldeira-leggett model, Phys. Rev. Lett. 93, 130404 (2004)
CrossRef
ADS
Google Scholar
F. Marquardt, D. S. Golubev: Many-fermion generalization of the Caldeira-Leggett model, Phys. Rev. A 72, 022113 (2005)
CrossRef
ADS
MathSciNet
Google Scholar
F. Marquardt: Fermionic Mach-Zehnder interferometer subject to a quantum bath, Europhys. Lett. 72, 788 (2005)
CrossRef
ADS
MathSciNet
Google Scholar
Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, H. Shtrikman: An electronic Mach-Zehnder interferometer, Nature 422, 415 (2003)
CrossRef
ADS
Google Scholar
I. Neder, M. Heiblum, Y. Levinson, D. Mahalu, V. Umansky: Unexpected behavior in a two-path electron interferometer, Phys. Rev. Lett. 96, 016804 (2006)
CrossRef
ADS
Google Scholar
G. Seelig, M. Büttiker: Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer, Phys. Rev. B 64, 245313 (2001)
CrossRef
ADS
Google Scholar
F. Marquardt, C. Bruder: Influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer, Phys. Rev. Lett. 92, 056805 (2004)
CrossRef
ADS
Google Scholar
F. Marquardt, C. Bruder: Effects of dephasing on shot noise in an electronic Mach-Zehnder interferometer, Phys. Rev. B 70, 125305 (2004)
CrossRef
ADS
Google Scholar
H. Förster, S. Pilgram, M. Büttiker: Decoherence and full counting statistics in a Mach-Zehnder interferometer, Phys. Rev. B 72, 075301 (2005)
CrossRef
ADS
Google Scholar
S. Pilgram, P. Samuelsson, H. Förster, M. Büttiker: Full counting statistics for voltage and dephasing probes, cond-mat/0512276
Google Scholar
F. Marquardt: Equations of motion approach to decoherence and current noise in ballistic interferometers coupled to a quantum bath, cond-mat/0604458 (2006)
Google Scholar
A. O. Caldeira, A. J. Leggett: Path integral approach to quantum Brownian motion, Physica 121A, 587 (1983)
ADS
MathSciNet
Google Scholar
Ya. M. Blanter, M. Büttiker: Shot noise in mesoscopic conductors, Phys. Rep. 336, 1 (2000)
CrossRef
ADS
Google Scholar
B. L. Altshuler, A. G. Aronov, D. E. Khmelnitsky: Effects of electron-electron collisions with small energy transfers on quantum localization, J. Phys. C Solid State 15, 7367 (1982)
CrossRef
ADS
Google Scholar
S. Chakravarty, A. Schmid: Weak localization: The quasiclassical theory of electrons in a random potential, Phys. Rep. 140, 195 (1986)
CrossRef
ADS
Google Scholar
H. Fukuyama, E. Abrahams: Inelastic scattering time in two-dimensional disordered metals, Phys. Rev. B 27, 5976 (1983)
CrossRef
ADS
Google Scholar
I. Aleiner, B. L. Altshuler, M. E. Gershenzon: Interaction effects and phase relaxation in disordered systems, Waves in Random Media 9, 201 (1999) [condmat/9808053]
MATH
CrossRef
ADS
MathSciNet
Google Scholar
F. Marquardt, J. v. Delft, R. Smith, V. Ambegaokar: Decoherence in weak localization I: Pauli principle in influence functional, cond-mat/0510556
Google Scholar
J. v. Delft, F. Marquardt, R. Smith, V. Ambegaokar: Decoherence in weak localization II: Bethe-Salpeter calculation of Cooperon, cond-mat/0510557; J. v. Delft: Influence functional for decoherence of interacting electrons in disordered conductors, cond-mat/0510563
Google Scholar
D. S. Golubev, A. D. Zaikin: Quantum decoherence and weak localization at low temperatures, Phys. Rev. B 59, 9195 (1999)
CrossRef
ADS
Google Scholar
In contrast, the decoherence rate given in Ref. [35] is equal to that obtained for a single particle, with f = 0 in our formula, thus saturating at T = 0. We should note that the authors of Ref. [35] disagree with our conclusions, see their comment: D. S. Golubev and A. D. Zaikin, cond-mat/0512411.
Google Scholar
W. Eiler: Electron-electron interaction and weak localization, J. Low Temp. Phys. 56, 481 (1984)
CrossRef
ADS
Google Scholar
D. Cohen, Y. Imry: Dephasing at low temperatures, Phys. Rev. B 59, 11143 (1999)
CrossRef
ADS
Google Scholar