Advertisement

Modelling Perspectives

  • Peter A. Tass
Part of the Springer Series in Synergetics book series (SSSYN)

Abstract

Before we dwell on prospective modelling studies in the context of neuronal phase resetting, let us first recall the starting point of our modelling approach. The repetitive firing of a neuron in the Hodgkin and Huxley (1952) model for the squid axon corresponds to a motion along a limit cycle (cf. Murray 1989). As explained in Sect. 3.4 a limit cycle oscillator can be approximated by means of a phase oscillator (Winfree 1967, Kuramoto 1984), and, thus, a population of repetitively firing neurons can be modeled by a cluster of phase oscillators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Benabid, A.L., Pollak, P., Louveau, A., Henry, S., De Rougemont, J. (1987): Combined (thalamotomy and stimulation) stereotaxic surgery of the VIM thalamic nucleus for bilateral Parkinson’s disease, Proc. Am. Soc. Stereotaxis Funct. Neurosurg., Montreal, Applied Neurophysiology 50, 344–346CrossRefGoogle Scholar
  2. Best, E.N. (1979): Null space in the Hodgkin—Huxley equations: a critical test, Biophys. J. 27, 87–104Google Scholar
  3. Creutzfeldt, O.D. (1983): Cortex Cerebri, Springer, BerlinCrossRefGoogle Scholar
  4. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J. (1988): Coherent oscillations: a mechanism of feature linking in the visual cortex?, Biol. Cybern. 60, 121–130CrossRefGoogle Scholar
  5. Engel, J., Pedley, T. A. (eds.) (1997): Epilepsy: A comprehensive textbook, Lippincott-Raven, PhiladelphiaGoogle Scholar
  6. Ermentrout, G.B. (1981): n: m phase-locking of weakly coupled oscillators, J. Math. Biol. 12, 327–342Google Scholar
  7. Ermentrout, G.B. (1994): In: Ventriglia, F. (ed.): Neural Modeling and Neural Networks, Pergamon Press, Oxford, 79–119Google Scholar
  8. Ermentrout, G.B., Rinzel, J. (1981): Waves in a simple, excitable or oscillatory reaction—diffusion model, J. Math. Biol. 11, 269–294MathSciNetCrossRefzbMATHGoogle Scholar
  9. Farmer, J.D. (1981): Spectral broadening of period-doubling bifurcation sequences, Phys. Rev. Lett. 47, 179–182 (1981)ADSCrossRefGoogle Scholar
  10. Freund, H.-J. (1983): Motor unit and muscle activity in voluntary motor control, Physiological Reviews 63, 387–436Google Scholar
  11. Gray, C.M., Singer, W. (1987): Stimulus specific neuronal oscillations in the cat visual cortex: a cortical function unit, Soc. Neurosci. 404, 3Google Scholar
  12. Gray, C.M., Singer, W. (1989): Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex, Proc. Natl. Acad. Sci. USA 86, 1698–1702ADSCrossRefGoogle Scholar
  13. Guttman, R., Lewis, S., Rinzel, J. (1980): Control of repetitive firing in squid axon membrane as a model for a neurone oscillator, J. Physiol. (London) 305, 377395Google Scholar
  14. Haken, H. (1983): Advanced Synergetics, Springer, BerlinzbMATHGoogle Scholar
  15. Hodgkin, A.L., Huxley, A.F. (1952): A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117, 500–544Google Scholar
  16. Hoppensteadt, F.C., Izhikevich, E.M. (1997): Weakly Connected Neural Networks, Springer, BerlinCrossRefGoogle Scholar
  17. Izhikevich, E.M. (1998): Phase models with explicit time delays, Phys. Rev. E 58, 905–908Google Scholar
  18. König, P., Engel, A.K., Singer, W. (1996): Integrator or coincidence detector? The role of the cortical neuron revisited, TINS 19, 130–137Google Scholar
  19. Kuramoto, Y. (1984): Chemical Oscillations, Waves, and Turbulence, Springer, BerlinCrossRefzbMATHGoogle Scholar
  20. Lamarre, Y., DeMontigny, C., Dumont, M., Weiss, M. (1971): Harmaline-induced rhythmic activity of cerebellar and lower brain stem neurons, Brain Res. 32, 246–250CrossRefGoogle Scholar
  21. Lamarre, Y., Joffroy, A.J., Dumont, M., DeMontigny, C., Grou, F., Lind, P. (1975): Central mechanisms of tremor in some feline and primate models, can. J. neurol. Sci. 2, 227–233Google Scholar
  22. Lamarre, Y., Joffroy, A.J. (1979): Experimental tremor in monkey: activity of thalamic on precentral cortical neurons in the absence of peripheral feedback, Adv. Neurol. 24, 109–122Google Scholar
  23. Lee, R.G., Stein, R.B. (1981): Resetting of tremor by mechanical perturbations: a comparison of essential tremor and parkinsonian tremor, Ann. Neurol. 10, 523–531CrossRefGoogle Scholar
  24. Lenz, F.A., Kwan, H.C., Martin, R.L., Tasker, R.R., Dostrovsk, J.O., Lenz, Y.E. (1994): Single unit analysis of the human ventral thalamic nuclear group. Tremor-related activity in functionally identfied cells, Brain 117, 531–543CrossRefGoogle Scholar
  25. Llinâs, R., Jahnsen, H. (1982): Electrophysiology of mammalian thalamic neurons in vitro, Nature 297, 406–408ADSCrossRefGoogle Scholar
  26. Murray, J. D. (1989): Mathematical Biology, Springer, BerlinCrossRefzbMATHGoogle Scholar
  27. Nieuwenhuys, R., Voogd, J., van Huijzen, Chr. (1991): Das Zentralnervensystem des Menschen, 2nd ed., Springer, BerlinGoogle Scholar
  28. Pikovsky, A.S. (1985): Phase synchronization of chaotic oscillations by a periodic external field, Sov. J. Commun. Tchnol. Electron. 30, 85 (1985)Google Scholar
  29. Pikovsky, A.S., Rosenblum, M.G., Kurths, J. (1996): Synchronization in a population of globally coupled chaotic oscillators, Europhys. Lett. 34, 165–170Google Scholar
  30. Rosenblum, M.G., Pikovsky, A.S., Kurths, J. (1996): Phase Synchronization of Chaotic Oscillators, Phys. Rev. Lett. 76, 1804–1807ADSCrossRefGoogle Scholar
  31. Schuster, H.G., Wagner, P. (1989): Mutual entrainment of two limit cycle oscillators with time delayed coupling, Prog. Theor. Phys. 81, 939–945MathSciNetADSCrossRefGoogle Scholar
  32. Steriade, H., Jones, E.G., Llinâs, R. (1990): Thalamic Oscillations and Signaling, John Wiley and Sons, New YorkGoogle Scholar
  33. Stratonovich, R.L. (1963): Topics in the Theory of Random Noise, Gordon and Breach, New YorkGoogle Scholar
  34. Tass, P., Haken, H. (1996): Synchronization in networks of limit cycle oscillators, Z. Phys. B 100, 303–320Google Scholar
  35. Winfree, A.T. (1967): Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16, 15–42CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter A. Tass
    • 1
  1. 1.Neurologische KlinikHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations