Clustering in the Presence of Noise

  • Peter A. Tass
Part of the Springer Series in Synergetics book series (SSSYN)


This chapter presents different patterns of synchronized collective activity occurring provided there is no stimulation. Mathematically speaking, we analyze special solutions of (4.21) which arise provided the stimulation term S vanishes. All of these patterns can only emerge because the oscillators’ mutual synchronizing interactions resist the influence of noise. As the coupling strength is increased and passes its critical value, noisy cluster states appear which can be considered as stochastic versions of the cluster states analyzed in Chap. 3.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crawford, J.D. (1994): Amplitude expansions for instabilities in populations of globally-coupled oscillators, J. Stat. Phys. 74, 1047–1084MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Crawford, J.D. (1995): Scaling and singularities in the entrainment of globally coupled oscillators, Phys. Rev. Lett. 74, 4341–4344ADSCrossRefGoogle Scholar
  3. Daido, H. (1994): Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling, Phys. Rev. Lett. 73, 760–763ADSCrossRefGoogle Scholar
  4. Daido, H. (1996): Onset of cooperative entrainment in limit-cycle oscillators with uniform all-to-all interactions: bifurcation of the order function, Physica D 91, 24–66MathSciNetzbMATHCrossRefGoogle Scholar
  5. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V. (1993): Magnetoencephalography–theory, instrumentation, and applications to noninvasive studies of the working brain, Reviews of Modern Physics, 65, 413–497ADSCrossRefGoogle Scholar
  6. Haken, H. (1983): Advanced Synergetics, Springer, Berlin; (1996): Principles of Brain Functioning, A Synergetic Approach to Brain Activity, Behavior and Cognition, Springer, Berl in SGoogle Scholar
  7. Hirsch, M.W., Smale, S. (1974): Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press, San DiegozbMATHGoogle Scholar
  8. Kelley, A. (1967): The stable, center-stable, center, center-unstable and unstable manifolds, J. Diff. Equ. 3, 546–570MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. Kuramoto, Y. (1984): Chemical Oscillations, Waves, and Turbulence, Springer, BerlinzbMATHCrossRefGoogle Scholar
  10. Niedermeyer, E., Lopes da Silva, F. (1987): Electroencephalography - Basic Principles, Clinical Applications and related Fields,2nd ed., Urban and Schwarzenberg, BaltimoreGoogle Scholar
  11. Nunez, P. (1995): Neocortical Dynamics and Human EEG Rhythms, Oxford University Press, New YorkGoogle Scholar
  12. Pliss, V. (1964): Principal reduction in the theory of stability of motion, Izv. Akad. Nauk. SSSR Math. Ser. 28, 1297–1324 (in Russian)MathSciNetzbMATHGoogle Scholar
  13. Strogatz, S.H., Mirollo, R.E. (1991): Stability of incoherence in a population of coupled oscillators, J. Stat. Phys. 63, 613–635MathSciNetADSCrossRefGoogle Scholar
  14. Strogatz, S.H., Mirollo, R.E., Matthews, P.C. (1992): Coupled nonlinear oscillators below the synchronization threshold: relaxation by generalized Landau damping, Phys. Rev. Lett. 68, 2730–2733MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. Wiesenfeld, K., Hadley, P. (1989): Attractor crowding in oscillator arrays, Phys. Rev. Lett. 62, 1335–1338MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1999

Authors and Affiliations

  • Peter A. Tass
    • 1
  1. 1.Neurologische KlinikHeinrich-Heine-UniversitätDüsseldorfGermany

Personalised recommendations