Skip to main content

Magnetic Measurements in Plant Electrophysiology

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111.

    CrossRef  CAS  PubMed  Google Scholar 

  • Barr RC, Ramsey M, Spach MS (1977) Relating epicardial to body-surface potential distributions by means of transfer-coefficients based on geometry measurements. IEEE T Biomed Eng 24:1–11.

    CrossRef  CAS  Google Scholar 

  • Bardeen J, Cooper LN, Schrieffer JR (1957) Theory of superconductivity. Phys Rev 5:1175–1204.

    CrossRef  Google Scholar 

  • Baudenbacher F, Peters NT, Wikswo JP (2002) High resolution low-temperature superconductivity superconducting quantum interference device microscope for imaging magnetic fields of samples at room temperatures. Rev Sci Instrum 73:1247–1254.

    CrossRef  CAS  Google Scholar 

  • Baudenbacher F, Fong LE, Thiel G, Wacke M, Jazbinsek V, Holzer JR, Stampfl A, Trontelj Z (2005) Intracellular axial current in Chara corallina reflects the altered kinetics of ions in cytoplasm under the influence of light. Biophys J 88:690–697.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bauer CS, Plieth C, Hansen UP, Sattelmacher B, Simonis W, Schonknecht G (1997) Repetitive Ca2+ spikes in a unicellular green alga. FEBS Lett 405:390–393.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bentrup FW (1979) Reception and transduction of electrical and mechanical stimuli. In: Haupt W, Feinleib ME (eds) Physiology of movement. Encyclopedia of plant physiology, new series. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Bednorz JG, Mueller KA (1986) Possible high Tc superconductivity in the barium-lanthanum-copper-oxygen system. Z Phys B 64:189–193.

    CrossRef  CAS  Google Scholar 

  • Beilby MJ (1990) Current-voltage curves for plant membrane studies: a critical analysis of the method. J Exp Bot 41:165–182.

    CrossRef  Google Scholar 

  • Belsak M (2005) Diploma thesis, Faculty of Mathematics and Physics, University of Ljubljana.

    Google Scholar 

  • Berestovsky GN, Kataev AA (2002) Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur Biophys J (published online).

    Google Scholar 

  • Berestovsky GN, Kataev AA (2005) Voltage-gated calcium and Ca2+-activated chloride channels and Ca2+ transients: voltage-clamp studies of perfused and intact cells of Chara. Eur Bio J 34:973–986.

    CrossRef  CAS  Google Scholar 

  • Biskup B, Gradmann D, Thiel G (1999) Calcium release from InsP3-sensitive internal stores initiates action potential in chara. FEBS Lett 453:72–76.

    CrossRef  CAS  PubMed  Google Scholar 

  • Bowles DJ (1990) Defence-related proteins in higher plants. Annu Rev Biochem 59:873–907.

    CrossRef  CAS  PubMed  Google Scholar 

  • Brebbia CA, Telles JCF, Wrobel LC (1984) Boundary element techniques: theory and applications in engineering. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Burnett DS (1987) Finite element analysis. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Chavis P, Fagni L, Lansman JB, Bockaert J (1996) Functional coupling between ryanodine receptors and L-type calcium channels in neurons. Nature 382:719–722.

    CrossRef  CAS  PubMed  Google Scholar 

  • Chessin M, Zipf AE (1990) Alarm systems in higher plants. Bot Rev 56:193–235.

    CrossRef  Google Scholar 

  • Clark J, Plonsey R (1966) A mathematical evaluation of the core conductor model. Biophys J 6:95–112.

    CrossRef  CAS  PubMed  Google Scholar 

  • Clint GM, MacRobbie EAC (1987) Sodium efflux from perfused giant algal cells. Planta 171:247–253.

    CrossRef  CAS  Google Scholar 

  • Curio G, Erné SN, Burghoff M, Wolff H-D, Pilz A (1993) Non-invasive neuromagnetic monitoring of nerve and muscle injury currents. Electroenceph Clin Neurophys 89:154–160.

    CrossRef  CAS  Google Scholar 

  • Deaver BS, Fairbank WM (1961) Experimental evidence for quantized flux in superconducting cylinders. Phys Rev Lett 7:43–46.

    CrossRef  Google Scholar 

  • Drung D (1995) The PTB 83-SQUID system for biomagnetic applications in a clinic. IEEE T Appl Supercon 5:2112–2117.

    CrossRef  Google Scholar 

  • Erné SN, Hahlbohm D, Scheer H, Trontelj Z (1981) Berlin magnetically shielded room (BMSR). In: Erné SN, Hahlbohm D, Lübbig H (eds) Biomagnetism, Proceedings of the Third International Workshop on Biomagnetism, Berlin, May 1980. Walter de Gruyter, Berlin, pp 79–89.

    Google Scholar 

  • Findlay GP, Hoppe AB (1976) Electrical properties of plants. In: Luttge U, Pitman MG (eds) Transport in plants II. Springer, Berlin Heidelberg New York, pp 79–92.

    Google Scholar 

  • Gradmann D (1976) “Metabolic” action potentials in Acetabularia. J Membr Biol 29:23–45.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gradmann D, Blatt MR, Thiel G (1993) Electrocoupling of ion transporters in plants. J Membr Biol 136:327–332.

    CAS  PubMed  Google Scholar 

  • Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum-norm estimates. Med Biol Eng Comput 32:35–42.

    CrossRef  PubMed  Google Scholar 

  • Hansen PC (1992) Numerical tools for analysis and solution of Fredholm integral-equations of the 1st kind. Inverse Problems 8:849–872.

    CrossRef  Google Scholar 

  • Herde O, Pena-Cortes H, Willmitzer L, Fisahn J (1998) Remote stimulation by heat induces characteristic membrane-potential responses in the vein of wild-type and abscisic acid-deficient tomato plants. Planta 206:146–153.

    CrossRef  CAS  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol Lond 117:500–544.

    CAS  PubMed  Google Scholar 

  • Homann U, Thiel G (1994) Cl- and K+ channel currents during the action potential in chara; simultaneous recording of membrane voltage and patch currents. J Membrane Biol 141:297–309.

    CrossRef  CAS  Google Scholar 

  • Hope AB, Findlay GP (1964) The action potential in chara. Plant Cell Physiol 5:377–379.

    CAS  Google Scholar 

  • Hope AB, Walker NA (1975) Physiology of giant algal cells. Cambridge University Press, London.

    Google Scholar 

  • Jaklevic RC, Lambe J, Silver AH, Mercereau JE (1964) Quantum interference effects in Josephson tunneling. Phys Rev Lett 12:159–160.

    CrossRef  Google Scholar 

  • Jazbinsek V, Thiel G, Wübbeler G, Müller W, Trontelj Z (2000) Magnetic detection of injury-induced ionic currents in bean plants. Eur Biophys J 29:515–522.

    CrossRef  CAS  PubMed  Google Scholar 

  • Josephson BD (1962) Possible new effects in superconductive tunnelling. Phys Lett 1:251–253.

    CrossRef  Google Scholar 

  • Kikuyama M, Tazawa M (1983) Transient increase of intracellular Ca2+ during excitation of tonoplast-free chara cells. Protoplasma 117:62–67.

    CrossRef  CAS  Google Scholar 

  • Koch H, Cantor R, Erné SN, Matthies KP, Peters M, Ryhänen T, Scheer HJ, Hahlbohm HD (1991) A 37 channel dc-SQUID magnetometer system. IEEE Trans Magn 27:2793–2796.

    CrossRef  Google Scholar 

  • Kotani M, Uchikawa Y, Kawakatsu M, Tsukada K, Kandori A, Sasabuti H, Suzuki H, Kondo S, Matsuda N, Shinada K, Yamada Y (1997) A whole-head SQUID system for detecting vector components. Appl Supercon 5:399–403.

    CrossRef  CAS  Google Scholar 

  • Miller AJ, Sanders D (1987) Depletion of cytosolic free calcium induced by photosynthesis. Nature 326:397–400.

    CrossRef  CAS  Google Scholar 

  • Mimura T, Tazawa M (1986) Light-induced membrane hyperpolarization and adenin nucleotide levels in perfused characean cells. Plant Cell Physiol 27:319–330.

    CAS  Google Scholar 

  • Moriyasu Y, Shimmen T, Tazawa M (1984) Electric characteristics of the vacuolar membrane of Chara in relation to pHv regulation. Cell Struct Funct 9:235–246.

    CrossRef  CAS  Google Scholar 

  • Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637.

    CrossRef  CAS  PubMed  Google Scholar 

  • Okihara K, Ohkawa T, Tsutsui I, Kasai M (1991) A calcium dependent and voltage-dependent chloride-sensitive anion channel in the chara plasmalemma. A patch clamp study. Plant Cell Physiol 32:593–602.

    Google Scholar 

  • Onnes HK (1911) The superconductivity of mercury. Comm Phys Lab 12:120.

    Google Scholar 

  • Othmer HG (1997) Signal transduction and second messenger systems. In: Othmer HG, Adler FR, Lewis MA, Dallon J (eds) Case studies in mathematical modeling—ecology, physiology and cell biology. Prentice Hall, Upper Saddle River, New Jersey, pp 99–126.

    Google Scholar 

  • Pena-Cortes H, Fisahn J, Willmitzer L. (1995) Signals involved in wound-induced proteinase inhibitor II gene expression in tomato and potato plants. Proc Natl Acad Sci USA. 92:4106–4113.

    CrossRef  CAS  PubMed  Google Scholar 

  • Parker RL (1977) Understanding inverse theory. Annu Rev Earth Planet Sci 5:35–64.

    CrossRef  Google Scholar 

  • Plieth C, Sattelmacher B, Hansen UP (1998) Light-induced cytosolic calcium transients in green plant cells. I. Methodological aspects of chlorotetracycline usage in algae and higher-plant cells. Planta 207:42–51.

    CrossRef  CAS  Google Scholar 

  • Plonsey R (1969) Bioelectric phenomena. McGraw-Hill, New York.

    Google Scholar 

  • Ramsey M, Barr RC, Spach MS (1977) Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in intact dog. Circ Res 41:660–667.

    PubMed  Google Scholar 

  • Reddy ASN (2001) Calcium: silver bullet in signalling. Plant Sci 160:381–404.

    CrossRef  CAS  PubMed  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57.

    CrossRef  CAS  Google Scholar 

  • Roblin G (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol 26:455–461.

    Google Scholar 

  • Roblin G, Bonnemain J-L (1985) Propagation in Vicia faba stem of a potential variation induced by wounding. Plant Cell Physiol 26:1273–1283.

    Google Scholar 

  • Ryan CA (1992) The search for the proteinase-inhibitor inducing factor PIIF. Plant Mol Biol 19:123–133.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sarvas J (1987) Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. Phys Med Biol 32:11–22.

    CrossRef  CAS  PubMed  Google Scholar 

  • Shimmen T, Mimura T, Kikuyama M, Tazawa M (1994) Characean cells as a tool for studying electrophysiological characteristics of plant cells. Cell Struct Funct 19:263–278.

    CrossRef  CAS  PubMed  Google Scholar 

  • Slibar M, Trontelj Z, Jazbinsek V, Thiel G, Mueller W (2000) Magnetic field and electric potential of excited plant cell Chara corallina: calculation and comparison with experiment. In: Aine CJ, Okada Y, Stroink G, Swithenby SJ, Wood CC (eds) Biomag 96: proceedings of the 10th international conference on biomagnetism. Springer, Berlin Heidelberg New York, pp 679–682.

    Google Scholar 

  • Stankovic B, Davies E (1998) The wound response in tomato involves rapid growth and electrical responses, systemically up-regulated transcription of proteinase inhibitors and calmodulin and down regulated translation. Plant Cell Physiol 39:268–274.

    CAS  Google Scholar 

  • Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New York.

    Google Scholar 

  • Tazawa M, Kikuyama M (2003) Is Ca2+ release from internal stores involved in membrane excitation in characean cells? Plant Cell Physiol 44:518–526.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tester M (1990) Plant ion channels: whole-cell and single channel studies. New Phytol 114:305–340.

    CrossRef  Google Scholar 

  • Thiel G, Homann U, Plieth C (1997) Ion channel activity during the action potential in chara: new insights with new techniques. J Exp Bot 48:609–622.

    CAS  Google Scholar 

  • Tinkham M (1996) Introduction to superconductivity, second edition. McGraw-Hill, Inc., New york.

    Google Scholar 

  • Trahms L, Erné SN, Trontelj Z, Curio G, Aust P (1989) Biomagnetic functional localization of a peripheral-nerve in man. Biophys J 55:1145–1153.

    CrossRef  CAS  PubMed  Google Scholar 

  • Trontelj Z, Pirnat J, Luznik J, Jazbinsek V, Valencic V, Krizaj D, Vodovnik L, Jercinovic A (1989) Measurement of magnetic field near an acute surgical Injury on the rabbit’s thigh. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum Press, New York, pp 517–520.

    Google Scholar 

  • Trontelj Z, Zorec R, Jazbinsek V, Erné SN (1994) Magnetic detection of a single action potential in Chara corallina internodal cells. Biophys J 66:1694–1696.

    CrossRef  CAS  PubMed  Google Scholar 

  • Umrath K (1929) Über Erregungsleitung bei höheren Pflanzen. Planta 7:174–207.

    CrossRef  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+ liberation during action potential in the giant alga chara. J Gen Physiol 118:11–21.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wacke M, Thiel G, Hütt MT (2003) Ca2+ dynamics during membrane excitation of green alga chara: model simulations and experimental data. J Membr Biol 191:179–192.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wikswo JP, Barach JP, Freeman JA (1980) Magnetic-field of a nerve impulse—1st measurements. Science 208:53–55.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65.

    CrossRef  CAS  Google Scholar 

  • Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga chara. Nature 296:647–651.

    CrossRef  CAS  PubMed  Google Scholar 

  • Williams SE, Pickard B (1972) Receptor potentials and action potentials in Drosera tentacles. Planta 103:193–221.

    CrossRef  Google Scholar 

  • Woosley JK, Roth BJ, Wikswo JP (1985) The magnetic field of a single axon: a volume conductor model. Math Biosci 76:1–36.

    CrossRef  Google Scholar 

  • Wübbeler G, Mackert J, Armbrust F, Burghoff M, Mackert B, Wolff K-D, Ramsbacher J, Curio G, Trahms L (1998) SQUID measurements of human nerve and muscle near-DC injury-currents using a mechanical modulation of the source position. Appl Supercond 6:559–565.

    CrossRef  Google Scholar 

  • Zimmerman JE, Thiene P, Harding JT (1970) Design and operation of stable RF-biased superconducting point-contact quantum devices, and a note on properties of perfectly clean metal contacts. J Appl Phys 41:1572–1580.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trontelj, Z., Thiel, G., Jazbinsek, V. (2006). Magnetic Measurements in Plant Electrophysiology. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_9

Download citation

Publish with us

Policies and ethics