Skip to main content

Electrophysiological Characterization of Plant Cation Channels

  • Chapter
Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babourina O, Hawkins B, Lew RR, Newman I, Shabala S (2001) K+ transport by Arabidopsis root hairs at low pH. Aust J Plant Physiol 28:635–641.

    CAS  Google Scholar 

  • Babourina O, Newman I, Shabala S (2002) Blue light-induced kinetics of H+ and Ca2+ fluxes in etiolated wild-type and phototropin-mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99:2433–2438.

    Article  PubMed  CAS  Google Scholar 

  • Barkla BJ, Pantoja O (1996) Physiology of ion transport across the tonoplast of higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:159–184.

    Article  PubMed  CAS  Google Scholar 

  • Blatt (1988) Potassium-dependent, bipolar gating of K+ channels in guard cells. J Membr Biol 102:235–246.

    Article  Google Scholar 

  • Brudern A, Thiel G (1999) Effect of cell-wall-digesting enzymes on physiological state and competence of maize coleoptile cells. Protoplasma 209:246–255.

    Article  CAS  Google Scholar 

  • Davenport R (2002) Glutamate receptors in plants. Ann Bot 90:549–557.

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325.

    PubMed  CAS  Google Scholar 

  • Demidchik V, Davenport RJ, Tester MA (2002a) Nonselective cation channels in plants. Annu Rev Plant Biol 53:67–107.

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Bowen HC, Maathuis FJM, Shabala SN, Tester MA, White PJ, Davies JM (2002b) Arabidopsis thaliana root non-selective cation channels mediate calcium uptake and are involved in growth. Plant J 32:799–808.

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+ and K+-permeable channels in plant root cells. J Cell Sci 116:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Demidchik V, Adobea P, Tester MA (2004) Glutamate activates sodium and calcium currents in the plasma membrane of Arabidopsis root cells. Planta 219:167–175.

    Article  PubMed  CAS  Google Scholar 

  • Dennison KL, Spalding EP (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 124:1511–1514.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer I, Horeau C, Lemaillet G, Zimmermann S, Bush DR, Rodriguez-Navarro A, Schachtman DP, Spalding EP, Sentenac H, Gaber RF (1999) Identification and characterization of plant transporters using heterologous expression systems. J Exp Bot 50:1073–1087.

    Article  CAS  Google Scholar 

  • Ehrhardt DW, Atkinson EM, Long SR (1992) Depolarization of Alfaalfa root hair membrane potential by Rhizobium mellitoti Nod factors. Science 256:998–1000.

    Article  PubMed  CAS  Google Scholar 

  • Favre P, Greppin H, Agosti RD (2001) Repetitive action potentials induced in Arabidopsis thaliana leaves by wounding and potassium chloride application. Plant Physiol Biochem 39:961–969.

    Article  CAS  Google Scholar 

  • Findley GP (1961) Voltage-clamp experiments with Nitella. Nature 191:812–814.

    Article  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422:442–446.

    Article  PubMed  CAS  Google Scholar 

  • Gelli A, Blumwald E (1997) Hyperpolarization-activated Ca2+-permeable channels in the plasma membrane of tomato cells. J Membr Biol 155:35–45.

    Article  PubMed  CAS  Google Scholar 

  • Green WN, Anderson OS (1991) Surface charges and ion channel function. Annu Rev Physiol 53:341–359.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell JV, Plant TD, Robbins J, Standen NB (1994) Voltage clamp techniques. In: Ogden DC (ed) Microelectrode techniques. The Plymouth workshop handbook, 2nd edn. Company of Biologists, Cambridge, UK.

    Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2000) Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc Natl Acad Sci USA 97: 4967–4972.

    Article  PubMed  CAS  Google Scholar 

  • Hamilton DWA, Hills A, Kohler B, Blatt MR (2001) Extracellular Ba2+ and voltage interact to gate Ca2+ channels at the plasma membrane of stomatal guard cells. FEBS Lett 491: 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40:539–569.

    Article  Google Scholar 

  • Hille B (1994) Ionic channels of excitable membranes. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A Quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544.

    PubMed  CAS  Google Scholar 

  • Hope AB (1961) Ionic relation of cells of Chara australis. V. The action potential. Aust J Biol Sci 15:69–82.

    Google Scholar 

  • Hope AB, Walker NA (1975) The physiology of giant algal cells. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F, Poree F, Boucherez J, Lebaudy A, Bouchez D, Very AA, Simonneau T, Thibaud JB, Sentenac H (2003) The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci USA 100:5549–5554.

    Article  PubMed  CAS  Google Scholar 

  • Hush JM, Newman IA, Overall RL (1992) Utilization of the vibrating probe and ion-selective microelectrode techniques to investigate electrophysiological responses to wounding in pea roots. J Exp Bot 43:1251–1257.

    Article  Google Scholar 

  • Ivashikina N, Becker D, Ache P, Meyerhoff O, Felle HH, Hedrich R (2001) K+ channel profile and electrical properties of Arabidopsis root hairs. FEBS Lett 508:463–469.

    Article  PubMed  CAS  Google Scholar 

  • Kennedy BF, de Filippis LF (2004) Tissue degradation and enzymatic activity observed during protoplast isolation in two ornamental Grevillea species. In Vitro Cell Dev Biol Plant 40:119–125.

    Article  CAS  Google Scholar 

  • Kiegle E, Gilliham M, Haseloff J, Tester M (2000) Hyperpolarisation-activated calcium currents found only in cells from the elongation zone of Arabidopsis thaliana roots. Plant J 21:225–229.

    Article  PubMed  CAS  Google Scholar 

  • Kurkdjian A, Bouteau F, Pennarun AM, Convert M, Cornel D, Rona JP, Bousquet U (2000) Ion currents involved in early Nod factor response in Medicago sativa root hairs: a discontinuous single-electrode voltage-clamp study. Plant J 22:9–17.

    Article  PubMed  CAS  Google Scholar 

  • Langer K, Levchenko V, Fromm J, Geiger D, Steinmeyer R, Lautner S, Ache P, Hedrich R (2004) The poplar K+ channel KPT1 is associated with K+ uptake during stomatal opening and bud development. Plant J 37:828–838.

    Article  PubMed  CAS  Google Scholar 

  • Levchenko V, Konrad KR, Dietrich P, Roelfsema MRG, Hedrich R (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc Natl Acad Sci USA 102:4203–4208.

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1991) Electrogenic transport properties of growing Arabidopsis root hairs—the plasma membrane proton pump and potassium channels. Plant Physiol 97:1527–1534.

    Article  PubMed  CAS  Google Scholar 

  • Lew RR, Dearnaley JDW (2000) Extracellular nucleotide effects on the electrical properties of growing Arabidopsis thaliana root hairs. Plant Sci 153:1–6.

    Article  CAS  Google Scholar 

  • Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta Biomembr 1465:343–358.

    Article  CAS  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestobsky GN (1983) Excitation of characeae cell membranes as a result of activation of calcium and chloride channels. J Membr Biol 72:43–58.

    Article  Google Scholar 

  • MacKinnon R (2004) Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew Chem Int Edit 43:4265–4277.

    Article  CAS  Google Scholar 

  • Meharg AA, Maurosset L, Blatt MR (1994) Cable correction of membrane currents from root hairs of Arabidopsis thaliana L. J Exp Bot 45:1–6.

    Article  Google Scholar 

  • Miedema H (2002) Surface potentials and the calculated selectivity of ion channels. Biophys J 82:156–159.

    Article  PubMed  CAS  Google Scholar 

  • Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta Biomembr 1465:343–358.

    Article  CAS  Google Scholar 

  • Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52:541–549.

    Article  PubMed  CAS  Google Scholar 

  • Moran N, Ehrenshtein G, Iwasa K, Bare C, Mischke C (1984) Ion channels in plasmalemma of wheat protoplasts. Science 226:835–838.

    Article  PubMed  CAS  Google Scholar 

  • Newman IA (2001) Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function. Plant Cell Environ 24:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Osterhout WJV (1908) The organization of the cell with respect to permeability. Science 38:408–409.

    Article  Google Scholar 

  • Osterhout WJV (1958) The use of aquatic plants in the study of some fundamental problems. Annu Rev Plant Physiol 8:1–11.

    Article  Google Scholar 

  • Osterhout WJV, Damon EB, Jacques AG (1927) Dissimilarity of inner and outer protoplasmic surfaces in Valonia. J Gen Physiol 11:193–205.

    Article  CAS  PubMed  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734.

    Article  PubMed  CAS  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux M, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature 434:404–408.

    Article  PubMed  CAS  Google Scholar 

  • Plaks AV, Sokolik AI, Yurin VM, Goncharik MN (1979) Chloride channel activation and excitation of Nitella cell tonoplast. Rep Acad Sci Belarus 23:947–949.

    CAS  Google Scholar 

  • Plaks AV, Sokolik AI, Yurin VM (1980) Excitable calcium channels of Nitella cell tonoplast. Izvestiya of the Academy of Sciences of BSSR, Biology section 1:121–124.

    Google Scholar 

  • Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312:361–362.

    Article  CAS  Google Scholar 

  • Scholz-Starke J, Gambale F, Carpaneto A (2005) Modulation of plant ion channels by oxidizing and reducing agents. Arch Biochem Biophys 434:43–50.

    Article  PubMed  CAS  Google Scholar 

  • Shabala S (2000) Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll. Plant Cell Environ 23:825–837.

    Article  CAS  Google Scholar 

  • Shabala SN, Newman IA, Morris J (1997) Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH. Plant Physiol 113:111–118.

    PubMed  CAS  Google Scholar 

  • Shabala SN, Newman IA, Whittington J, Juswono UP (1998) Protoplast ion fluxes: their measurements and variation with time, position and osmoticum. Planta 204:146–152.

    Article  CAS  Google Scholar 

  • Sokolik AI, Yurin VM (1981) Transport activity of potassium channels in the plasmalemma of Nitella cells at rest. Soviet Plant Physiol 28:294–301.

    CAS  Google Scholar 

  • Sokolik AI, Yurin VM (1986) Potassium channels in plasmalemma of Nitella cells at rest. J Membr Biol 89:9–22.

    Article  CAS  Google Scholar 

  • Stoelzle S, Kagawa T, Wada M, Hedrich R, Dietrich P (2003) Blue light activates calcium-permeable channels in Arabidopsis mesophyll cells via the phototropin signaling pathway. Proc Natl Acad Sci USA 100:1456–1461.

    Article  PubMed  CAS  Google Scholar 

  • Tanner W, Caspari T (1996) Membrane transport carriers. Annu Rev Plant Physiol Plant Mol Biol 47:595–626.

    Article  PubMed  CAS  Google Scholar 

  • Taylor A, Manison N, Brownlee C (1997) Regulation of channel activity underlying cell volume and polarity signals in Fucus. J Exp Bot 48:579–588.

    CAS  Google Scholar 

  • Tegg RS, Melian L, Wilson CR, Shabala S (2005) Plant cell growth and ion flux responses to the streptomycete phytotoxin thaxtomin A: calcium and hydrogen flux patterns revealed by the non-invasive MIFE technique. Plant Cell Physiol 46:638–648.

    Article  PubMed  CAS  Google Scholar 

  • Tester M (1990) Plant ion channels: whole-cell and single channel studies. New Phytol 114:305–40.

    Article  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393:13–18.

    Article  PubMed  CAS  Google Scholar 

  • Thion L, Mazars C, Nacry P, Bouchez D, Moreau M, Ranjeva R, Thuleau P (1998) Plasma membrane depolarization-activated calcium channels, stimulated by microtubule-depolymerizing drugs in wild-type Arabidopsis thaliana protoplasts, display constitutively large activities and a longer half-life in ton 2 mutant cells affected in the organization of cortical microtubules. Plant J 13:603–610.

    Article  PubMed  CAS  Google Scholar 

  • Tyerman SD, Schachtman DP (1992) The role of ion channels in plant nutrition and prospects for their genetic manipulation. Plant Soil 146:137–144.

    Article  CAS  Google Scholar 

  • Tyerman SD, Skerrett IM (1999) Root ion channels and salinity. Sci Hortic 78:175–235.

    Article  CAS  Google Scholar 

  • Tyerman SD, Beilby M, Whittington J, Juswono U, Newman I, Shabala S (2001) Oscillations in proton transport revealed from simultaneous measurements of net current and net proton fluxes from isolated root protoplasts: MIFE meets patch-clamp. Austr J Plant Physiol 28:591–604.

    CAS  Google Scholar 

  • Véry AA, Davies JM (2000) Hyperpolarization-activated calcium channels at the tip of Arabidopsis root hairs. Proc Natl Acad Sci USA 97:9801–9806.

    Article  PubMed  Google Scholar 

  • Véry A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175.

    Article  PubMed  Google Scholar 

  • Véry A-A, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603.

    Article  PubMed  Google Scholar 

  • White PJ (1998) Calcium channels in the plasma membrane of root cells. Ann Bot 81:173–183.

    Article  CAS  Google Scholar 

  • White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511.

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Bowen HC, Demidchik V, Nichols C, Davies JM (2002) Genes for calcium-permeable channels in the plasma membrane of plant root cells. Biochim Biophys Acta Rev Biomembr 1564:299–309.

    Article  CAS  Google Scholar 

  • Yurin VM, Sokolik AI, Kudryashov AP (1991) Regulation of ion transport through plant cell membranes. Science and Engineering, Minsk.

    Google Scholar 

  • Zawadzki T (1980) Action potentials in Lupinus angustifolius L. shoots. 5. Spread of excitation in the stem, leaves, and root. J Exp Bot 31:1371–1377.

    Article  Google Scholar 

  • Zimmermann S, Ehrhardt T, Plesch G, Muller-Rober B (1999) Ion channels in plant signalling. Cell Mol Life Sci 55:183–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demidchik, V., Sokolik, A., Yurin, V. (2006). Electrophysiological Characterization of Plant Cation Channels. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_8

Download citation

Publish with us

Policies and ethics