Skip to main content

New Solid State Microsensors in Plant Physiology

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstrong W (1994) Polarographic oxygen electrodes and their use in plant aeration studies. Proc R Soc Edinb 102B:511–527.

    Google Scholar 

  • Balusˇka F, Sˇamaj J, Menzel D (2003a) Polar transport of auxin: carrier-mediated flux across the plasma membrane or neurotransmitter-like secretion? Trends Cell Biol 13:282–285.

    CrossRef  Google Scholar 

  • Balusˇka F, Wojtaszek P, Volkmann D, Barlow PW (2003b) The architecture of polarized cell growth: the unique status of elongating plant cells. BioEssays 25:569–576.

    CrossRef  Google Scholar 

  • Balusˇka F, Mancuso S, Volkmann D, Barlow PW (2004) Root apices as plant command centres: the unique “brain-like” status of the root apex transition zone. Biologia 59:7–19.

    Google Scholar 

  • Balusˇka F, Hlavacka A, Mancuso S, Volkmann D, Barlow PW (2005) Neurobiological view of plants and their body plan. In: Balusˇka F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin Heidelberg New York (in press).

    Google Scholar 

  • Bard AJ, Fan FRF, Kwak J, Lev O (1989) Scanning electrochemical microscopy: introduction and principles. Anal Chem 61:132–138.

    CrossRef  CAS  Google Scholar 

  • Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, de Rossi D, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Carbon nanotube actuators. Science 284:1340–1344.

    CrossRef  CAS  PubMed  Google Scholar 

  • Beligni MV, Lamattina L (2001) Nitric oxide in plants: the history is just beginning. Plant Cell Environ 24:267–278.

    CrossRef  CAS  Google Scholar 

  • Bhalerao RP, Bennett MJ (2003) The case for morphogens in plants. Nat Cell Biol 5:939–943.

    CrossRef  CAS  PubMed  Google Scholar 

  • Braman RS, Hendrix SA (1989) Nanogram nitrite and nitrate determination in environmental and biological materials by Vanadium(III) reduction with chemiluminescence detection. Anal Chem 61:2715–2718.

    CrossRef  CAS  PubMed  Google Scholar 

  • Cataldo DA, Garland TR, Wildung RE (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol 73:844–848.

    CrossRef  CAS  PubMed  Google Scholar 

  • Delledonne M (2005) NO news is good news for plants. Curr Opin Plant Biol 8:390–396.

    CrossRef  CAS  PubMed  Google Scholar 

  • Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588.

    CrossRef  CAS  PubMed  Google Scholar 

  • Delledone M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease-resistance response. Proc Nat Acad Sci USA 98:13454–13459.

    CrossRef  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Nat Acad Sci USA 95:10328–10333.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dutta D, Landolt D (1972) Electrochemical behavior of nitric oxide in 4 M H2SO4 on platinum. J Electrochem Soc 119:1320–1325.

    CrossRef  CAS  Google Scholar 

  • Fischer Weiss T (1996) Cellular Biophysics, Vol. 1, MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Frateur I, Bayet E, Keddam M, Tribollet B (1999) Local redox potential measurement. Electrochem Commun 1:336–340.

    CrossRef  CAS  Google Scholar 

  • Friedemann MN, Robinson SW, Gerhardt GA (1996) o-Phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621–2628.

    CrossRef  CAS  PubMed  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gouvea CMCP, Souza JF, Magalhaes MIS (1997) NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Reg 21:183–187.

    CrossRef  CAS  Google Scholar 

  • Green LC, Wagner DA, Glagowski J (1982) Analysis of nitrate, nitrite and [15N] nitrate in biological fluids. Anal Biochem 126:131–138.

    CrossRef  CAS  PubMed  Google Scholar 

  • Haruyama T, Shiino S, Yanagida Y, Kobatake E, Aizawa M (1998) Two types of electrochemical nitric oxide (NO) sensing systems with heat-denatured Cyt C and radical scavenger PTIO. Biosens Bioelectron 13:763–769.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hedden P (1993) Modern methods for the quantitative analysis of plant hormones. Annu Rev Plant Physiol 44:107–129.

    CrossRef  CAS  Google Scholar 

  • Hunter WJ (1986) High-performance gas chromatography method for the estimation of the indole-3-acetic acid content of plant materials. J Chromatogr A 362:430–435.

    CrossRef  CAS  Google Scholar 

  • Jin JT, Mao ML, Tu H, Jin L (1999) Determination of nitric oxide with ultramicrosensors based on electropolymerized films of metal tetraaminophthalocyanines. Talanta 48:1005–1011.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kato D, Kunitake M, Nishizawa M, Matsue T, Mizutani F (2005) Amperometric nitric oxide microsensor using two-dimensional cross-linked Langmuir–Blodgett films of polysiloxane copolymer. Sensors Actuators B 108:384–388.

    CrossRef  Google Scholar 

  • Lamattina L, García-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Annu Rev Plant Biol 54:109–136.

    CrossRef  CAS  PubMed  Google Scholar 

  • Land SC, Porterfield DM, Sanger RH, Smith PJS (1999) The self-referencing oxygen-selective microelectrode: detection of transmembrane oxygen flux from single cells. J Exp Biol 202:211–218.

    CAS  PubMed  Google Scholar 

  • Leshem YY (1996) Nitric oxide in biological systems. Plant Growth Regul 18:155–159.

    CrossRef  CAS  Google Scholar 

  • Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage. J Plant Physiol 148:258–263.

    CAS  Google Scholar 

  • Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, HuVman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256.

    CrossRef  CAS  PubMed  Google Scholar 

  • Longsworth LG (1957) Diffusion in Liquids. In: Gray DE (ed) American Institute of Physics Handbook. McGraw-Hill, New York.

    Google Scholar 

  • Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678.

    CrossRef  CAS  PubMed  Google Scholar 

  • Malinski T, Taha Z, Grunfeld S, Burewicz A, Tomboulian P, Kiechle F (1993) Measurements of nitric oxide in biological materials using a porphyrinic microsensor. Anal Chim Acta 279:135–140.

    CrossRef  CAS  Google Scholar 

  • Mancuso S, Boselli M (2002) Characterisation of the oxygen fluxes in the division, elongation and mature zone of Vitis roots: influence of oxygen availability. Planta 214:767–774.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mancuso S, Marras AM (2003) Different pathways of the oxygen supply in the sapwood of young Olea europaea trees. Planta 216:1028–1033.

    CAS  PubMed  Google Scholar 

  • Mancuso S, Papeschi G, Marras AM (2000) A polarographic, oxygen-selective, vibrating-microelectrode system for the spatial and temporal characterisation of transmembrane oxygen fluxes in plants. Planta 21:384–389.

    CrossRef  Google Scholar 

  • Mancuso S, Marras AM, Volker M, Baluska F (2005) Non-invasive and continuous recordings of auxin fluxes in intact root apex with a carbon-nanotube-modified and self-referencing microelectrode. Anal Biochem 341:344–351.

    CrossRef  CAS  PubMed  Google Scholar 

  • Mao L, Yamamoto K, Zhou W, Jin L (2000) Electrochemical nitric oxide sensors based on electropolymerized film of M(salen) with central ions of Fe, Co, Cu, and Mn. Electroanalysis 12:72–77.

    CrossRef  CAS  Google Scholar 

  • Mitchell KM, Michaelis EK (1998) Multimembrane carbon fiber electrodes for physiological measurements of nitric oxide. Electroanalysis 10:81–88.

    CrossRef  CAS  Google Scholar 

  • Mullins GL, Sommers LE (1986) Cadmium and zinc influx characteristics by intact corn (Zea mays L.) seedlings. Plant Soil 96:153–164.

    CrossRef  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells. Plant Physiol 128:13–16.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ober ES, Sharp RE (1996) A microsensor for direct measurements of O2 partial pressure within plant tissue. J Exp Bot 296:447–454.

    CrossRef  Google Scholar 

  • Papeschi G, Mancuso S, Marras AM (2000) Electrochemical behaviour of Cu/CuSe microelectrode and its application in detecting temporal and spatial localisation of copper(II) fluxes along Olea europaea roots. J Solid Stat Electrochem 4:325–329.

    CrossRef  CAS  Google Scholar 

  • Pendley BD, Abruña HD (1990) Construction of submicrometer voltammetric electrodes. Anal Chem 62:782–784.

    CrossRef  CAS  Google Scholar 

  • Penner RM, Heben MJ, Longin TL, Lewis NS (1990) Fabrication and use of nanometer-sized electrodes in electrochemistry. Science 250:1118–1121.

    CrossRef  CAS  PubMed  Google Scholar 

  • Romero-Puertas MC, Delledonne M (2003) Nitric oxide signalling in plant-pathogen interactions. IUBMB Life 55:579–583.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sanchez FG, Diaz AN, Pareja AJ (1996) Micellar liquid chromatography of plant growth regulators detected by derivative fluorometry. J Chromatogr A 723:227–233.

    CrossRef  Google Scholar 

  • Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Düchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579:5399–5406.

    CrossRef  CAS  PubMed  Google Scholar 

  • Shibuki K (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9:69–76.

    CrossRef  CAS  PubMed  Google Scholar 

  • Sivaguru M, Baluska F, Volkmann D, Felle HH, Horst WJ 1999 Impacts of aluminum on the cytoskeleton of the maize root apex. Short-term effects on the distal part of the transition zone. Plant Physiol 119:1073–1082.

    CrossRef  CAS  PubMed  Google Scholar 

  • Trevin S, Bedioui F, Devynck J (1996) New electropolymerized nickel porphyrin films in aqueous solution. Application to the detection of nitric oxide. J Electroanal Chem 408:261–265.

    CrossRef  Google Scholar 

  • Weiler EW (1984) Immunoassay of plant growth regulators. Annu Rev Plant Physiol 35:85–95.

    CrossRef  CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signalling in animal and plant cells. Trends Plant Sci 6:177–183.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wennmalm A, Lanne B, Petersson AS (1990) Detection of endothelial-derived relaxing factor in human plasma in the basal state and following ischemia using electron paramagnetic resonance spectrometry. Anal Biochem 187:359–63.

    CrossRef  CAS  PubMed  Google Scholar 

  • Whalen WJ, Riley J, Nair P (1967) A microelectrode for measuring intracellular pO2. J Appl Physiol 23:798–801.

    CAS  PubMed  Google Scholar 

  • Xian Y, Sun W, Xue J, Luo M, Jin L (1999) Iridium oxide and palladium modified nitric oxide microsensor. Anal Chim Acta 381:191–196.

    CrossRef  CAS  Google Scholar 

  • Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation. FEBS Lett 468:89–92.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zhang XL, Cardoso L, Broderick M, Fein F, Lin J (2000) Novel integrated nitric oxide sensor based on carbon fiber electrode coated with NO-selective membranes. Electroanalysis 12:1113–1117.

    CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mancuso, S., Marras, A.M. (2006). New Solid State Microsensors in Plant Physiology. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_7

Download citation

Publish with us

Policies and ethics