Skip to main content

Electrochemical Methods and Measuring Transmembrane Ion Gradients

  • Chapter
Plant Electrophysiology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ammann D (1986) Ion-selective microelectrodes, principles, design and application. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Bakker E, Pretsch E (2005) Potentiometric sensors for trace level analysis. Trends Anal Chem 24:199–207.

    Article  CAS  Google Scholar 

  • Blatt MR (1991) A primer in plant electrophysiological methods. In: Dey PM, Harbourne JB (eds) Methods in plant biochemistry, vol 6. Academic Press, San Diego, pp 281–356.

    Google Scholar 

  • Blatt MR, Slayman CL (1983) KCl leakage from microelectrodes and its impact on the membrane parameters of a non-excitable cell. J Memb Biol 72:223–234.

    Article  CAS  Google Scholar 

  • Blatter LA, McGuigan JAS (1988) Estimation of the upper limit of the free magnesium concentration measured with Mg-sensitive microelectrodes in ferret ventricular muscle: (1) use of the Nicolsky–Eisenmann equation and (2) in calibrating solutions of the appropriate concentrations. Magnesium 7:154–165.

    CAS  PubMed  Google Scholar 

  • Brown RJC, Milton MJT (2005) Analytical techniques for trace element analysis: an overview. Trends Anal Chem 24:266–274.

    Article  CAS  Google Scholar 

  • Carden DE, Diamond D, Miller AJ (2001) An improved Na+-selective microelectrode for intracellular measurements in plant cells. J Exp Bot 52:1353–1359.

    Article  CAS  PubMed  Google Scholar 

  • Coster HGL (1966) Chloride in cells of Chara australis. Aust J Biol Sci 19:545–554.

    CAS  Google Scholar 

  • Cuin TA, Miller AJ, Laurie SA, Leigh RA (1999) Nitrate interference with potassium-selective microelectrodes. J Exp Bot 50:1709–1712.

    Article  CAS  Google Scholar 

  • Delessert C, Wilson IW, van der Straeten D, Dennis ES, Dolferus R (2004) Spatial and temporal analysis of the local response to wounding in Arabidopsis leaves. Plant Mol Biol 55:165–181.

    Article  CAS  PubMed  Google Scholar 

  • Fluka Chemicals (1996) Selectophore® Catalogue: 152.

    Google Scholar 

  • Fry CH, Hall SK, Blatter LA, McGuigan JAS (1990) Analysis and presentation of intracellular measurements obtained with ion-selective microelectrodes. Exp Physiol 75:187–198.

    CAS  PubMed  Google Scholar 

  • Gao D, Knight MR, Trewavas AJ, Sattelmacher B, Plieth C (2004) Self-reporting Arabidopsis expressing pH and [Ca2+] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134:898–908.

    Article  CAS  PubMed  Google Scholar 

  • Henriksen GH, Bloom AJ, Spanswick RM (1990) Measurement of net fluxes of ammonium and nitrate at the surface of barely roots using ion-selective microelectrodes. Plant Physiol 93:271–280.

    Article  CAS  PubMed  Google Scholar 

  • Inczédy J, Lengyel Y, Ure AM (1998) Compendium of analytical nomenclature: definitive rules 1997, 3rd edn. Blackwell Science, Oxford.

    Google Scholar 

  • Janz GJ (1961) Silver-silver halide electrodes. In: Ives DJG, Janz GJ (eds) Reference electrodes: theory and practice. Academic Press, New York, pp 218–220.

    Google Scholar 

  • Kochian LV, Shaff JE, Kuhtrieber WM, Jaffe L, Lucas WJ (1992) Use of extracellular, ion-selective, vibrating microelectrode system for the quantification of K+, H+ and Ca2+ fluxes in maize roots and maize suspension cells. Planta 188:601–610.

    Article  CAS  Google Scholar 

  • MacRobbie EAC (1971) Fluxes and compartmentation in plant cells. Annu Rev Plant Physiol 22:75–96.

    Article  CAS  Google Scholar 

  • Miller AJ (1995) Ion-selective microelectrodes for measurement of intracellular ion concentrations. Methods Plant Cell Biol 49:273–289.

    Google Scholar 

  • Miller AJ, Smith SJ (1992) The mechanism of nitrate transport across the tonoplast of barley root cells. Planta 187:554–557.

    Article  CAS  Google Scholar 

  • Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854.

    Article  CAS  Google Scholar 

  • Miller AJ, Zhen R-G (1991) Measurement of intracellular nitrate concentration in Chara using nitrate-selective microelectrodes. Planta 184:47–52.

    Article  CAS  Google Scholar 

  • Miller AJ, Cookson SJ, Smith SJ, Wells DM (2001) The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 52:541–549.

    Article  CAS  PubMed  Google Scholar 

  • Miller AJ, Wells DM, Braven J, Ebdon L, Le Goff T, Clark LJ, Whalley WR, Gowing DJG, Leeds-Harrison PB (2003) Novel sensors for measuring soil nitrogen, water availability and strength. Proceedings of the British Society for Crop Protection International Congress, Glasgow, pp 1107–1114.

    Google Scholar 

  • Negulescu PA, Machen TE (1990) Intracellular ion activities and membrane transport in parietal cells measured with fluorescent dyes. In: Fleischer S, Fleischer B (eds) Methods in enzymology, vol 192. Academic Press, San Diego, pp 38–81.

    Google Scholar 

  • Okihara K, Kiyosawa K (1988) Ion composition of the Chara internode. Plant Cell Physiol 29:21–25.

    CAS  Google Scholar 

  • Radcliffe SA, Miller AJ, Ratcliffe RG (2005) Microelectrode and 133Cs NMR evidence for variable cytosolic and cytoplasmic nitrate pools in maize root tips. Plant Cell Environ 28: 1379–1387.

    Article  CAS  Google Scholar 

  • Ratcliffe RG, Shachar-Hill Y (2001) Probing plant metabolism with NMR. Annu Rev Plant Physiol Plant Mol Biol 52:499–526.

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Slayman CL (1982) Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol 80:377–402.

    Article  CAS  PubMed  Google Scholar 

  • Tsien RY, Rink TJ (1981) Ca2+ selective electrodes: a novel PVC-gelled neutral carrier mixture compared with other currently available sensors. J Neurosci Meth 4:73–86.

    Article  CAS  Google Scholar 

  • Walker DJ, Smith SJ, Miller AJ (1995) Simultaneous measurement of intracellular pH and K+ or NO3 - in barley root cells using triple-barreled, ion-selective microelectrodes. Plant Physiol 108:743–751.

    CAS  PubMed  Google Scholar 

  • Wells D, Miller AJ (2000) Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil 221:105–108.

    Article  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65.

    Article  CAS  Google Scholar 

  • Zhen R-G, Koyro H-W, Leigh RA, Tomos AD, Miller AJ (1991) Compartmental nitrate concentrations in barley root cells measured with nitrate-selective microelectrodes and by single-cell sap sampling. Planta 185:356–361.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, A.J., Wells, D.M. (2006). Electrochemical Methods and Measuring Transmembrane Ion Gradients. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_2

Download citation

Publish with us

Policies and ethics