Skip to main content

Electrophysiology of Plant Gravitropism

  • Chapter
  • 1825 Accesses

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Assmann SM, Haubrick LL (1996) Transport proteins of the plant plasma membrane. Curr Opin Cell Biol 8:458–467.

    CrossRef  CAS  PubMed  Google Scholar 

  • Behrens HM, Weisenseel MH, Sievers A (1982) Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol 70:1079–1083.

    CrossRef  PubMed  Google Scholar 

  • Behrens HM, Gradmann D, Sievers A (1985) Membrane-potential responses following gravistimulation in roots of Lepidium sativum L. Planta 163:463–472.

    CrossRef  Google Scholar 

  • Belyavskaya NA (1996) Calcium and graviperception in plants: inhibitor analysis. Int Rev Cytol 168:123–185.

    CrossRef  CAS  Google Scholar 

  • Björkman T, Leopold AC (1985) Gravistimulation-induced changes in current patterns around root caps. Physiologist 28:S99–S100.

    PubMed  Google Scholar 

  • Björkman T, Leopold AC (1987) An electric current associated with gravity sensing in maize roots. Plant Physiol 84:841–846.

    CrossRef  PubMed  Google Scholar 

  • Björkman T, Cleland RE (1991) The role of extracellular free-calcium gradients in gravitropic signaling in maize roots. Planta 185:379–384.

    PubMed  Google Scholar 

  • Bose JC (1907) Comparative electro-physiology, a physico-physiological study. Longmans Green, London.

    Google Scholar 

  • Brauner L (1927) Untersuchungen über das geoelektrische Phänomen. Jahrb Wiss Bot 66:381–428.

    Google Scholar 

  • Clark WG (1937) Polar transport of auxin and electrical polarity in coleoptile of Avena. Plant Physiol 12:409–440.

    CrossRef  CAS  PubMed  Google Scholar 

  • Collings DA, White RG, Overall RL (1992) Ionic current changes associated with the gravity-induced bending response in roots of Zea mays L. Plant Physiol 100:1417–1426.

    CrossRef  CAS  PubMed  Google Scholar 

  • Darwin C (1896) The power of movement in plants. Appleton, New York.

    Google Scholar 

  • Davies E, Stankovi´c B (2006) Electrical signals, the cytoskeleton, and gene expression: current hypotheses. In: Communication in Plants–Neuronal Aspects of Plant Life. Baluˇska F, Mancuso S, Dieter V, eds., Berlin, New York, Springer Verlag, pp 309–320.

    Google Scholar 

  • Daye S, Biro RL, Roux SJ (1984) Inhibition of gravitropism in oat coleoptiles by the calcium chelator, ethyleneglycol-bis-(a-aminoethyl ether)-N, N¢-tetraacetic acid. Physiol Plant 61:449–454.

    CrossRef  CAS  PubMed  Google Scholar 

  • Etherton B, Dedolph RR (1972) Gravity and intracellular differences in membrane potentials of plant cells. Plant Physiol 49:1019–1020.

    CrossRef  PubMed  Google Scholar 

  • Fasano JM, Swanson SJ, Blancaflor EB, Dowd PE, Kao T, Gilroy S (2001) Changes in root cap pH are required for the gravity response of the Arabidopsis root. Plant Cell 13:907–921.

    CrossRef  CAS  PubMed  Google Scholar 

  • Goswami KKA, Audus LJ (1976) Distribution of calcium, potassium and phosphorus in Helianthus annuus hypocotyls and Zea mays coleoptiles in relation to tropic stimuli and curvatures. Ann Bot 40:49–64.

    CAS  Google Scholar 

  • Grahm L, Hertz CH (1962) Measurement of the geoelectric effect in coleoptiles by a new technique. Physiol Plant 15:96–114.

    CrossRef  Google Scholar 

  • Grahm L (1964) Measurement of geoelectric and auxin-induced potentials in coleoptiles with a refined vibrating electrode technique. Physiol Plant 17:231–261.

    CrossRef  Google Scholar 

  • Hejnowicz Z, Krause E, Glebicki K, Sievers A (1991) propagated fluctuations of the electric potential in the apoplasm of Lepidium sativum L. roots. Planta 186:127–134.

    CrossRef  Google Scholar 

  • Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36:416–419.

    CrossRef  Google Scholar 

  • Imagawa K, Toko K, Ezaki S, Hayashi K, Yamafuji K (1991) Electrical potentials during gravitropism in bean epicotyls. Plant Physiol 97:193–196.

    CrossRef  PubMed  Google Scholar 

  • Ishikawa H, Evans M (1990) Gravity-induced changes in intracellular potentials in elongating cortical cells of mung bean roots. Plant Cell Physiol 31:457–462.

    CAS  PubMed  Google Scholar 

  • Iwabuchi A, Yano M, Shimizu H (1989) Development of extracellular electric pattern around Lepidium roots: its possible role in root growth and gravitropism. Protoplasma 148:98–100.

    CrossRef  Google Scholar 

  • Johannes S, Collings DA, Rink JC, Allen NS (2001) Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes. Plant Physiol 127:119–130.

    CrossRef  CAS  PubMed  Google Scholar 

  • Katekar GF, Geissler AE (1980) Auxin transport inhibitors. IV. Evidence of a common mode of action for a proposed class of auxin transport inhibitors: the phytotropins. Plant Physiol 66:1190–1195.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983a) Reversible loss of gravitropic sensitivity in maize roots after tip application of calcium chelators. Science 220:1375–1377.

    CrossRef  PubMed  Google Scholar 

  • Lee JS, Mulkey TJ, Evans ML (1983b) Gravity induces polar transport of calcium across root tips of maize. Plant Physiol 73:874–876.

    CrossRef  CAS  PubMed  Google Scholar 

  • Legue V, Blancaflor E, Wymer C, Perbal G, Fantin D, Gilroy S (1997) Cytoplasmic free Ca2+ in Arabidopsis roots changes in response to touch but not gravity. Plant Physiol 114:789–800.

    CrossRef  CAS  PubMed  Google Scholar 

  • Masson PH (1995) Root gravitropism. BioEssays 17:119–127.

    CrossRef  CAS  PubMed  Google Scholar 

  • Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718.

    CrossRef  CAS  PubMed  Google Scholar 

  • Monshausen GB, Sievers A (2002) Basipetal propagation of gravity-induced surface pH changes along primary roots of Lepidium sativum L. Planta 215:980–988.

    CrossRef  CAS  PubMed  Google Scholar 

  • Monshausen GB, Zieschang HE, Sievers A (1996) Differential proton secretion in the apical elongation zone caused by gravistimulation is induced by a signal from the root cap. Plant Cell Environ 19:1408–1414.

    CrossRef  CAS  PubMed  Google Scholar 

  • Nechitailo G, Gordeev A (2001) Effect of artificial electric fields on plants grown under microgravity conditions. Adv Space Res 28:629–631.

    CrossRef  CAS  PubMed  Google Scholar 

  • Philippar K, Fuchs I, Lüthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Böttger M, Becker D, Hedrich R (1999) Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism. Proc Natl Acad Sci USA 96:12186–12191.

    CrossRef  CAS  PubMed  Google Scholar 

  • Philippar K, Ivashikina N, Ache P, Christian M, Lüthen H, Palme K, Hedrich R (2004) Auxin activates KAT1 and KAT2, two K+-channel genes expressed in seedlings of Arabidopsis thaliana. Plant J 37:815–827.

    CrossRef  CAS  PubMed  Google Scholar 

  • Philosoph-Hadas S, Meir S, Rosenberger I, Halevy AH (1996) Regulation of the gravitropic response and ethylene biosynthesis in gravistimulated snapdragon spikes by calcium chelators and ethylene inhibitors. Plant Physiol 110:301–310.

    CAS  PubMed  Google Scholar 

  • Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the Earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:1–11.

    CrossRef  Google Scholar 

  • Roblin G, Fleurat-Lessard P (1987) Redistribution of potassium, chloride and calcium during the gravitropically induced movement of Mimosa pudica pulvinus. Planta 170:242–248.

    CrossRef  CAS  Google Scholar 

  • Roux SJ, Biro RL, Halle CC (1983) Calcium movements and the cellular basis of gravitropism. Adv Space Res 3:221–227.

    CrossRef  CAS  PubMed  Google Scholar 

  • Schrank AR (1947) Bioelectric fields and growth. Lund EJ (ed). University of Texas Press, Austin, Tex.

    Google Scholar 

  • Scott AC, Allen NS (1999) Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. Plant Physiol 121:1291–1298.

    CrossRef  CAS  PubMed  Google Scholar 

  • Scott BIH, Martin DW (1962) Bioelectric fields of bean roots and their relation to salt accumulation. Aust J Biol Sci 15:83–100.

    CAS  Google Scholar 

  • Shigematsu H, Toko K, Matsuno T, Yamafuji K (1994) Early gravi-electrical responses in bean epicotyls. Plant Physiol 105:875–880.

    PubMed  Google Scholar 

  • Sievers A, Sondag C, Trebacz K, Hejnowicz Z (1995) Gravity induced changes in intracellular potentials in statocytes of cress roots. Planta 197:392–398.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stankovi´c B (2001) 2001: a plant space odyssey. Trends Plant Sci 6:591–593.

    CrossRef  Google Scholar 

  • Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tanada T, Vinten-Johansen C (1980) Gravity induces fast electrical field change in soybean hypocotyls. Plant Cell Environ 3:127–130.

    Google Scholar 

  • Toko K, Fujiyoshi T, Tanaka C, Iiyama S, Yoshida T, Hayashi K, Yamafuji K (1989) Growth and electric current loops in plants. Biophys Chem 33:161–176.

    CrossRef  CAS  PubMed  Google Scholar 

  • Toko K, Tanaka C, Ezaki S, Iiyama S, Yamafuji K (1990) Growth and electric current flowing at the surface of stems. Protoplasma 154:71–73.

    CrossRef  Google Scholar 

  • Weisenseel MH, Meyer AJ (1997) Bioelectricity, gravity and plants. Planta 203:S98–S106.

    CrossRef  CAS  PubMed  Google Scholar 

  • Weisenseel M.H, Becker HF, Ehlogötz JG (1992) Growth, gravitropism, and endogenous ion currents of cress roots (Lepidium sativum L.). Plant Physiol 100:16–25.

    CrossRef  PubMed  Google Scholar 

  • Wilkins MB, Woodcock AER (1965) Origin of the geoelectric effect in plants. Nature 208:990–992.

    CrossRef  CAS  Google Scholar 

  • Wilkins MB (1966) Geotropism. Annu Rev Plant Physiol 17:379–408.

    CrossRef  CAS  Google Scholar 

  • Woodcock AER, Wilkins MB (1971) The geoelectric effect in plant shoots. IV. Inter-relationship between growth, auxin concentration and electrical potentials in Zea coleoptiles. J Exp Bot 22:512–525.

    CrossRef  Google Scholar 

  • Wright LZ, David LR (1983) Evidence for a relationship between H+ excretion and auxin in shoot gravitropism. Plant Physiol 72:99–104.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stanković, B. (2006). Electrophysiology of Plant Gravitropism. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_18

Download citation

Publish with us

Policies and ethics