Skip to main content

Long-Distance Electrical Signaling and Physiological Functions in Higher Plants

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MRG, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+ selective, K+ sensing ion channel. FEBS Lett 486:93–98.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001) VFK1, a Vicia faba K+ channel involved in phloem unloading. Plant J 27:571–580.

    CrossRef  CAS  PubMed  Google Scholar 

  • Adrian ED, Bronk DW (1928) The discharge of impulses in motor nerve fibres. I. Impulses in single fibres of the phrenic nerve. J Physiol 66:81–101.

    CAS  PubMed  Google Scholar 

  • Arend M, Weisenseel MH, Brummer M, Osswald W, Fromm J (2002) Seasonal changes of plasma membrane H+-ATPase and endogenous ion current during growth in poplar plants. Plant Physiol 129:1651–1663.

    CrossRef  CAS  PubMed  Google Scholar 

  • Arend M, Monshausen G, Wind C, Weisenseel MH, Fromm J (2004) Effect of potassium deficiency on the plasma membrane H+-ATPase of the wood ray parenchyma in poplar. Plant Cell Environ 27:1288–1296.

    CrossRef  CAS  Google Scholar 

  • Beilby MJ, Coster HGL (1979) The action potential in Chara corallina. II. Two activation-inactivation transients in voltage clamps of plasmalemma. Aust J Plant Physiol 6:329–335.

    Google Scholar 

  • Canny MJP (1975) Mass transfer. In: Zimmermann HM, Milburn JA (eds) Encyclopedia of plant physiology. Springer, Berlin Heidelberg New York, pp 139–153.

    Google Scholar 

  • Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under control of sucrose gradient and pmf. J Biol Chem 280:21437–21443.

    CrossRef  CAS  PubMed  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631.

    CrossRef  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610.

    CrossRef  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76.

    CrossRef  CAS  Google Scholar 

  • Deeken R, Geiger D, Fromm J, Koroleva O, Ache P, Langenfeld-Heyser R, Sauer N, May ST, Hedrich R (2002) Loss of the AKT2/3 potassium channel affects sugar loading into the phloem of Arabidopsis. Planta 216:334–344.

    CrossRef  CAS  PubMed  Google Scholar 

  • Dziubinska H, Trebacz K, Zawadzki T (1989) The effect of excitation on the rate of respiration in the liverwort Conocephalum conicum. Physiol Plant 75:417–423.

    CrossRef  Google Scholar 

  • Eschrich W, Fromm J, Evert RF (1988) Transmission of electric signals in sieve tubes of zucchini plants. Bot Acta 101:327–331.

    Google Scholar 

  • Evert RF, Eschrich W, Eichhorn SE (1973) P-protein distribution in mature sieve elements of Cucurbita maxima. Planta 109:193–210.

    CrossRef  CAS  Google Scholar 

  • Findlay GP (1961) Voltage-clamp experiments with Nitella. Nature 191:812–814.

    CrossRef  Google Scholar 

  • Findlay GP (1962) Calcium ions and the action potential in Nitella. Aust J Biol Sci 15:69–82.

    CAS  Google Scholar 

  • Fromm J (1991) Control of phloem unloading by action potentials in Mimosa. Physiol Plant 83:529–533.

    CrossRef  Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469.

    CrossRef  Google Scholar 

  • Fromm J, Eschrich W (1988a) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. I. The movement of 14C-labelled photoassimilates. Trees 2:7–17.

    Google Scholar 

  • Fromm J, Eschrich W (1988b) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. II. Energesis and transmission of seismic stimulations. Trees 2:18–24.

    Google Scholar 

  • Fromm J, Eschrich W (1988c) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. III. Displacement of ions during seismonastic leaf movements. Trees 2:65–72.

    Google Scholar 

  • Fromm J, Eschrich W (1989) Correlation of ionic movements with phloem unloading and loading in barley leaves. Plant Physiol Biochem 27:577–585.

    CAS  Google Scholar 

  • Fromm J, Eschrich W (1990) Seismonastic movements in Mimosa. In: Satter RL, Gorton HL, Vogelmann TC (eds) The pulvinus: motor organ for leaf movement. Am Soc Plant Physiol, Rockville, pp 25–43.

    Google Scholar 

  • Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680.

    CAS  Google Scholar 

  • Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213.

    CrossRef  CAS  Google Scholar 

  • Fromm J, Lautner S (2005) Characteristics and functions of phloem-transmitted electrical signals in higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants—neuronal aspects of plant life. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L.). J Exp Bot 44:1119–1125.

    CrossRef  Google Scholar 

  • Fromm J, Hajirezaei M, Wilke I (1995) The biochemical response of electrical signaling in the reproductive system of Hibiscus plants. Plant Physiol 109:375–384.

    CAS  PubMed  Google Scholar 

  • Fromm J, Meyer AJ, Weisenseel MH (1997) Growth, membrane potential and endogenous ion currents of willow (Salix viminalis) roots are all affected by abscisic acid and spermine. Physiol Plant 99:529–537.

    CrossRef  CAS  Google Scholar 

  • Gaffey CT, Mullins LJ (1958) Ion fluxes during the action potential in Chara. J Physiol 144:505–524.

    CAS  PubMed  Google Scholar 

  • Gamalei YV, Fromm J, Krabel D, Eschrich W (1994) Chloroplast movement as response to wounding in Elodea canadensis. J Plant Physiol 144:518–524.

    CAS  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferriere N, Thibaud JB, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94:647–655.

    CrossRef  CAS  PubMed  Google Scholar 

  • Gustin MC, Zhou XL, Martinac B, Kung C (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242:762–765.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hörmann G (1898) Studien über die Protoplasmaströmung bei den Characaean. Fischer, Jena.

    Google Scholar 

  • Hope AB (1961) Ionic relations of cells of Chara corallina. V. The action potential. Aust J Biol Sci 14:312–322.

    CAS  Google Scholar 

  • Kempers R, Ammerlaan A, van Bel AJE (1998) Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol 116:271–278.

    CrossRef  CAS  Google Scholar 

  • Kishimoto U (1968) Response of Chara internodes to mechanical stimulation. Ann Rep Biol Works, Fac Sci, Osaka Univ 16:61–66.

    Google Scholar 

  • Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722.

    CrossRef  CAS  Google Scholar 

  • Langer K, Ache P, Geiger D, Stinzing A, Arend M, Wind C, Regan S, Fromm J, Hedrich R (2002) Poplar potassium transporters capable of controlling K+ homeostasis and K+ dependent xylogenesis. Plant J 32:997–1009.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lautner S, Grams TE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209.

    CrossRef  CAS  PubMed  Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels. J Membrane Biol 72:43–58.

    CrossRef  Google Scholar 

  • Mansfield TA, Hetherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41:55–75.

    CrossRef  CAS  Google Scholar 

  • Martinac B, Buechner M, Delcour AH, Adler J, Kung C (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA 84:2297–2301.

    CrossRef  CAS  PubMed  Google Scholar 

  • Minchin PEH, Thorpe MR (1983) A rate of cooling response in phloem translocation. J Exp Bot 34:529–536.

    CrossRef  Google Scholar 

  • Mühling KH, Sattelmacher B (1997) Determination of apoplastic K+ in intact leaves by ratio imaging of PBFI fluorescence. J Exp Bot 48:1609–1614.

    Google Scholar 

  • Mummert E, Gradmann D (1976) Voltage dependent potassium fluxes and the significance of action potentials in Acetabularia. Biochim Biophys Acta 443:443–450.

    CrossRef  CAS  PubMed  Google Scholar 

  • Oda K (1976) Simultaneous recording of potassium and chloride effluxes during an action potential in Chara corallina. Plant Cell Physiol 17:1085–1088.

    CAS  Google Scholar 

  • Preiss J, Robinson N, Spilatro S, McNamara K (1985) Starch synthesis and its regulation. In: Heath R, Preiss J (eds) Regulation of carbon partitioning in photosynthetic tissue. Am Soc Plant Physiol, Rockville, pp 1–26.

    Google Scholar 

  • Rhodes J, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal transduction in the wounded tomato plant. Planta 200:50–57.

    CrossRef  CAS  Google Scholar 

  • Schurr U, Gollan T (1990) Composition of xylem sap of plants experiencing root water stress: a descriptive study. In: Davies WJ, Jeffcoat B (eds) Importance of root to shoot communication in the response to environmental stress. Br Soc Plant Growth Regul, Bristol, pp 201–214.

    Google Scholar 

  • Shiina T, Tazawa M (1986) Action potential in Luffa cylindrica and its effects on elongation growth. Plant Cell Physiol 27:1081–1089.

    Google Scholar 

  • Shvetsova T, Mwesigwa J, Labady A, Kelly S, Thomas D, Lewis K, Volkov AG (2002) Soybean electrophysiology: effects of acid rain. Plant Sci 162:723–731.

    CrossRef  CAS  Google Scholar 

  • Sibaoka T (1973) Transmission of action potentials in Biophytum. Bot Mag 86:51–61.

    CrossRef  Google Scholar 

  • Simons P (1992) The action plant. Movement and nervous behaviour in plants. Blackwell, Oxford.

    Google Scholar 

  • Sinyukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plants. Nature 215:1278–1280.

    CrossRef  Google Scholar 

  • Spanjers AW (1981) Bioelectric potential changes in the style of Lilium longiflorum Thunb. after self- and cross-pollination of the stigma. Planta 153:1–5.

    CrossRef  Google Scholar 

  • Spanswick RM (1972) Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102:215–227.

    CrossRef  CAS  Google Scholar 

  • Spanswick RM, Costerton JWF (1967) Plasmodesmata in Nitella translucens: structure and electrical resistance. J Cell Sci 2:451–464.

    CAS  PubMed  Google Scholar 

  • Spyropoulos CS, Tasaki I, Hayward G (1961) Fractination of tracer effluxes during action potential. Science 133:2064–2065.

    CrossRef  PubMed  Google Scholar 

  • Stankovic B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406.

    CrossRef  CAS  Google Scholar 

  • Szmelcman S, Adler J (1976) Change in membrane potential during bacterial chemotaxis. Proc Natl Acad Sci USA 73:4387–4391.

    CrossRef  CAS  PubMed  Google Scholar 

  • Tazawa M, Shimmen T, Mimura T (1987) Membrane control in the Characeae. Annu Rev Plant Physiol 38:95–117.

    CrossRef  CAS  Google Scholar 

  • Van Bel AJE (1993) The transport phloem. Specifics of its functioning. Prog Bot 54:134–150.

    Google Scholar 

  • Van Bel AJE, Ehlers K (2005) Electrical signalling via plasmodesmata. In: Oparka KJ (ed) Plasmodesmata. Blackwell, Oxford.

    Google Scholar 

  • Van Bel AJE, van Rijen HVM (1994) Microelectrode-recorded development of symplasmic autonomy of the sieve element/companion cell complex in the stem phloem of Lupinus luteus. Planta 192:165–175.

    CrossRef  Google Scholar 

  • Van Sambeek JW, Pickard BG (1976) Mediation of rapid electrical, metabolic, transpirational and photosynthetic changes by factors released from wounds. I. Variation potentials and putative action potentials in intact plants. Can J Bot 54:2642–2650.

    CrossRef  Google Scholar 

  • Volk G, Franceschi VR (2000) Localization of a calcium-channel-like protein in the sieve element plasma membrane. Aust J Plant Physiol 27:779–786.

    CAS  Google Scholar 

  • Volkov AG, Mwesigwa J (2000) Interfacial electrical phenomena in green plants: action potentials. In: Volkov AG (ed) Liquid interfaces in chemical, biological, and pharmaceutical applications. Dekker, New York, pp 649–681.

    Google Scholar 

  • Volkov AG, Collins DJ, Mwesigwa J (2000) Plant electrophysiology: pentachlorophenol induces fast action potentials in soybean. Plant Sci 153:185–190.

    CrossRef  CAS  PubMed  Google Scholar 

  • Volkov AG, Dunkley TC, Morgan SA, Ruff D II, Boyce YL, Labady AJ (2004) Bioelectrochemical signaling in green plants induced by photosensory systems. Bioelectrochem 63:91–94.

    CrossRef  CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, Odonnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase-inhibitor induction in the wounded plant. Nature 360:62–65.

    CrossRef  CAS  Google Scholar 

  • Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37.

    CrossRef  CAS  PubMed  Google Scholar 

  • Woodley SJ, Fensom DS, Thompson RG (1976) Biopotentials along the stem of Helianthus in association with short-term translocation of 14C and chilling. Can J Bot 54:1246–1256.

    CrossRef  Google Scholar 

  • Wright JP, Fisher DB (1981) Measurement of the sieve tube membrane potential. Plant Physiol 67:845–848.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zawadzki T, Davies E, Dziubinska H, Trebacz K (1991) Characteristics of action potentials in Helianthus annuus. Physiol Plant 83:601–604.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fromm, J. (2006). Long-Distance Electrical Signaling and Physiological Functions in Higher Plants. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_12

Download citation

Publish with us

Policies and ethics