Skip to main content

Historical Introduction to Plant Electrophysiology

  • Chapter

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baluska F, Hlavacka A (2005) Plant formins come of age: something special about cross-walls.-New Phytologist 168: 499–503.

    CrossRef  CAS  PubMed  Google Scholar 

  • Baluska F, Volkmann D, Menzel D (2005) Plant synapses: actin-based domains for cell-to-cell communication. Trends Plant Sci 10:106–111.

    CrossRef  CAS  PubMed  Google Scholar 

  • Baluska F, Mancuso S, Volkmann D (2006) Communications in plants. Neuronal aspects of plant life. Springer, Berlin Heidelberg New York.

    CrossRef  Google Scholar 

  • Basset AL (1965) Electrical effects in bone. Sci Am 213:18–25.

    Google Scholar 

  • Bernstein J (1912) Elektrobiologie. Thieme, Braunschweig.

    Google Scholar 

  • Bertholon (1783) De l’eléctricite des vegetaux. Paris.

    Google Scholar 

  • Beutner R (1920) Die Entstehung elektrischer Ströme in lebenden Geweben. Fischer, Stuttgart.

    Google Scholar 

  • Biedermann W (1895) Elektrophysiologie. Fischer, Jena.

    Google Scholar 

  • Bose JC (1906) Plant response as a means of physiological investigation. Longman Green, London.

    Google Scholar 

  • Bose JC (1913) Researches on the irritability of plants. Longman Green, London.

    Google Scholar 

  • Bose JC (1925) Physiological and anatomical investigations on Mimosa pudica. Proc R Soc Ser B 98:280–299.

    CrossRef  Google Scholar 

  • Bose JC (1926) The nervous mechanism of plants. Longman Green, London.

    Google Scholar 

  • Brazier MAB (1962) The analysis of brain waves. Sci Am 206:142–153.

    Google Scholar 

  • Brooks SC, Gelfan S (1928) Bioelectric potentials in Nitella. Protoplasma 5:86–96.

    CrossRef  CAS  Google Scholar 

  • Burdon-Sanderson J (1873) Note on the electrical phenomena which accompany stimulation of leaf of Dionea muscipula. Proc R Soc 21:495–496.

    CrossRef  Google Scholar 

  • Burdon-Sanderson J (1899) On the relation of motion in anima/ls and palnts to the electrical phenomena which are associated with it. Proc R Soc 65:37–64.

    CrossRef  Google Scholar 

  • Cheeseman JM, Pickard BG (1977) Depolarization of cell membranes in leaves of Lycopersicon by extract containing Ricca’s factor. Can J Bot 55:511–519.

    CrossRef  CAS  Google Scholar 

  • Cole KS, Curtis HJ (1938) Electric impedance of Nitella during activity. J Gen Physiol 22:37–64.

    CrossRef  PubMed  CAS  Google Scholar 

  • Cole KS, Curtis HJ (1939) Electric impedance of the squid giant axon during activity. J Gen Physiol 22:37–64.

    CrossRef  Google Scholar 

  • Darwin C (1896) The power of movements in plants. Appleton, New York.

    Google Scholar 

  • Darwin C (1875) Insectivorous plants. Murray, London.

    Google Scholar 

  • Du Bois-Reymond (1848) Untersuchungen über thierische Elektrizität. Reimer, Berlin.

    Google Scholar 

  • Dziubinska H, Trebasz K, Zawadzki T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 158:1167–1172.

    CrossRef  CAS  Google Scholar 

  • Eccles JC Sir (1964) The physiology of synapses. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Elzenga JTM, Prins HBA, van Volkenburgh E (1995) Light-induced membrane potential changes of epidermal and mesophyll cells in growing leaves of Pisum sativum. Planta 197:127–134.

    CrossRef  CAS  Google Scholar 

  • France RH (1909) Pflanzenpsychologie als Arbeitshypothese der Pflanznephysiologie. Kosmos, Stuttgart.

    Google Scholar 

  • France RH (1911) Pflanzenkunde für jedermann. Ullstein, Berlin.

    Google Scholar 

  • Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 273:463–469.

    CrossRef  Google Scholar 

  • Fromm J, Eschrich W (1988) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. Trees 2:7–24.

    Google Scholar 

  • Galvani L (1791) De viribus electricitatis in motu musculari commentaries. Bononiae Instituti Scientiarum, Bologna.

    Google Scholar 

  • Gunar II, Sinykhin AM (1962) A spreading wave of excitation in higher plants. Proc Acad Sci USSR (Bot) 142:214–215.

    Google Scholar 

  • Gunar II, Sinykhin AM (1963) Functional significance of action currents affecting the gas exchange of higher plants. Soviet Plant Physiol 10:219–226.

    Google Scholar 

  • Grey WF (1954) The electrical activity of the brain. Sci Am 190:54–63.

    Google Scholar 

  • Haake O (1892) Über die Ursachen elektrischer Ströme in Pflanzen. Flora 75:455–487.

    Google Scholar 

  • Haberlandt G (1890) Das reizleitende Gewebesystem der Sinnpflanze. Engelmann, Leipzig Haberlandt G (1906) Sinnesorgane im Pflanzenreich zur Perzeption mechanischer Reize. Engelmann, Leipzig.

    Google Scholar 

  • Haberlandt G (1914) Physiological plant anatomy. Macmillan, London.

    Google Scholar 

  • Hedrich R, Schroeder JI (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Physiol Plant Mol Biol 40:539–569.

    CrossRef  Google Scholar 

  • Herde O, Fuss H, Pena-Cortes H, Fisahn J (1995) Proteinase inhibitor II gene expression induced by electrical stimulation and control of photosynthetic activity in tomato plants. Plant Cell Physiol 36:737–742.

    CAS  Google Scholar 

  • Herde O, Atzorn R, Fisahn J, Wasternak C, Willmitzer L, Pena-Cortes H (1996) Localized wounding by heat initiates the accumulation of proteinase inhibitor II in abscisic acid deficient tomato plants by triggering jasmonic acid biosynthesis. Plant Physiol 112:853–860.

    CAS  PubMed  Google Scholar 

  • Herde O, Fuss H, Pena-Cortes H, Willmitzer L, Fisahn J (1998) Remote stimulation by heat induces characteristic membrane-potential responses in the veins of wild-type and abscisic acid-deficient tomato plants. Planta 206:146–153.

    CrossRef  CAS  Google Scholar 

  • Hermann L (1868) Untersuchungen zur Physiologie der Muskeln und Nerven. Hirschwald, Berlin.

    Google Scholar 

  • Higinbotham N (1973) Electropotentials of plant cells. Annu Rev Plant Physiol 24:25–46.

    CrossRef  CAS  Google Scholar 

  • Hille B (1992) Ionic channels of excitable membranes. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1949) Ionic currents underlying activity in the giant axon of the squid. Arch Sci Physiol 3:129–150.

    CAS  Google Scholar 

  • Hodick D, Sievers A (1988) The action potential of Dionea muscipula Ellis. Planta 174:8–18.

    CrossRef  CAS  Google Scholar 

  • Houwinck AL (1935) The conduction of excitation in Mimosa pudica. Receuil Traverse Bot Neerlandais 32:51–91.

    Google Scholar 

  • Jeschke WD (1970) Lichtabhangige Veränderungen des Membranpotentials bei Blattzellen von Elodea densa. Z Pflanzenphysiol 62:158–172.

    CAS  Google Scholar 

  • Karmanov VG, Lyalin OO, Mamulashvili GG (1972) The form of action potentials and cooperativeness of the excited elements in stems of winter squash. Soviet Plant Physiol 19:354–420.

    Google Scholar 

  • Keynes RD (1958) The nerve impulse and the squid. Sci Am 199:83.

    CrossRef  CAS  PubMed  Google Scholar 

  • Koketsu R (1923) Journal of the Department of Agriculture of the Kyashu Imperial University 1:55 (cited according to Bose 1926).

    Google Scholar 

  • Koziolek C, Grams TE, Schreiber U, Matyssek R, Fromm J (2003) Transient knockout of photosynthesis mediated by electrical signals. New Phytologist 161:715–722.

    CrossRef  Google Scholar 

  • Kunkel KAJ (1878) Über elektromotorische Wirkungen an unverletzten lebenden Pflanzenteilen. Arbeiten Botan Institut Würzburg 2:1–17.

    Google Scholar 

  • Lee DR (1981) Synchronous pressure-potential changes in the phloem of Fraxinus americana. Planta 151:304–308.

    CrossRef  Google Scholar 

  • Lemstrom S (1902) Elektrokultur. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Lunevsky VZ, Zherelova OM, Vostrikov IY, Berestovsky GN (1983) Excitation of Characeae cell membranes as a result of the activation of calcium and chloride channels. J Membr Biol 72:43–58.

    CrossRef  Google Scholar 

  • Lüttge U, Higinbotham N (1979) Transport in plants. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228.

    CrossRef  CAS  Google Scholar 

  • Malone M, Palumbo L, Boari F, Monteleone M, Jones HG (1994) The relationship between wound-induced proteinase inhibitors and hydraulic signals in tomato seedlings. Plant Cell Environ 17:81–87.

    CrossRef  CAS  Google Scholar 

  • Montenegro MI, Queiros MA, Daschbach JL (1991) Microelectrodes: theory and applications. Kluwer Academic, Dordrecht.

    Google Scholar 

  • Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature 260:779–802.

    CrossRef  Google Scholar 

  • Nemec B (1901) Die Reizleitung und reizleitende Strukturen bei den Pflanzen. Fischer, Jena.

    Google Scholar 

  • Nernst W (1889) Die elektromotorische Wirksamkeit der Ionen. Z Phys Chem 4:129–181.

    Google Scholar 

  • Opritov VA (1978) Propagating excitation and assimilate transport in the phloem. Soviet Plant Physiol 25:1042–1048.

    CAS  Google Scholar 

  • Osterhout WJV (1936) Electrical phenomena in large plant cells. Physiol Rev 16:216–237.

    Google Scholar 

  • Pfeffer W (1873) Physiologische Untersuchungen. Engelmann, Leipzig.

    Google Scholar 

  • Pfeffer W (1906) The physiology of plants, a treatise upon the metabolism and sources of energy in plants. Clarendon Press, Oxford.

    Google Scholar 

  • Pfeffer W (1921) Osmotische Untersuchungen; Studien zur Zellmechanik. Engelmann, Leipzig.

    Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201.

    CrossRef  Google Scholar 

  • Pyatygin SS (2003) Electrogenesis of plant cells under stress (in Russian). Prog Mod Biol (Moscow) 123:552–562.

    Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57.

    CrossRef  CAS  Google Scholar 

  • Ricca U (1916) Soluzione d’un problema di fisiologia: la propagazione di stimulo nella Mimosa. Nuovo G Bot Ital 23:51–170.

    Google Scholar 

  • Rybin IA (1977) The history of concepts on the light-induced bio-electrical responses of plant leaves (in Russian). In: Rybin IA, Mikheeva SA, Birukova EG (eds) The light-induced bio-electrical activity of plant leaves. Uralsk State University Press, Uralsk (Russia).

    Google Scholar 

  • Schildknecht H (1984) Turgorins—new chemical messengers for plant behavior. Endeavour NS 8:113–117.

    CrossRef  CAS  Google Scholar 

  • Sibaoka T (1969) Physiology of rapid movements in higher plants. Annu Rev Plant Physiol 20:165–184.

    CrossRef  CAS  Google Scholar 

  • Sibaoka T (1991) Rapid plant movements triggered by action potentials. Bot Mag (Tokyo) 104:73–95.

    CrossRef  Google Scholar 

  • Simons P (1992) The action plant. Movement and nervous behavior in plants. Blackwell, Oxford.

    Google Scholar 

  • Sinyukhin AM, Britikov EA (1967) Action potentials in the reproductive system of plants. Nature 215:1278–1280.

    CrossRef  Google Scholar 

  • Snow R (1924) Conduction and excitation in stem and leaf of Mimosa pudica. Proc R Soc Lond Ser B 96:344–360.

    CrossRef  Google Scholar 

  • Spalding EP, Slayman CL, Goldsmith MHM, Gradmann D, Bertl A (1992) Ion channels in Arabidopsis plasma membrane. Transport characteristics and involvement in light-induced voltage changes. Plant Physiol 99:96–102.

    CrossRef  CAS  PubMed  Google Scholar 

  • Spanjers AW (1981) Biolelectric potential changes in the style of Lilium longiflorum Thunb. after self- and cross-pollination of the stigma. Planta 153:1–5.

    CrossRef  Google Scholar 

  • Spanswick RM (1974) Evidence for an electrogenic pump in Nitella translucens. I. Control of the light-stimulated component of the membrane potential. Biochim Biophys Acta 332:387–398.

    CrossRef  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta 200:416–425.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997) The propagation of slow wave potentials in pea epicotyls. Plant Physiol 113:209–217.

    CAS  PubMed  Google Scholar 

  • Stahlberg R, van Volkenburgh E (1999) The effect of light on membrane potential, apoplastic pH and cell expansion in leaves of Pisum sativum L. var. Argenteum. Planta 208:188–195.

    CrossRef  CAS  Google Scholar 

  • Stahlberg R, van Volkenburgh E, Cleland RE (2000) Chlorophyll is not the primary photoreceptor for the stimulation of P-type H+ pump and growth in variegated leaves of Coleus x hybridus. Planta 212:1–8.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stahlberg R, van Volkenburgh E, Cleland RE (2001) Long-distance signaling within Coleus x hybridus leaves; mediated by changes in intra-leaf CO2? Planta 213:342–351.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stahlberg R, Cleland RE, Van Volkenburgh E (2006) Slow wave potentials—a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communications in plants. Neuronal aspects of plant life. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Stankovic B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279.

    CrossRef  CAS  PubMed  Google Scholar 

  • Stankovic B, Davies E (1998) The wound response in tomato involves rapid growth and electric responses, systemically up-regulated transcription of proteinase inhibitor and calmodulin and down-regulated translation. Plant Cell Physiol 39:268–274.

    CAS  Google Scholar 

  • Stern K (1924) Elektrophysiologie der Pflanzen. Springer, Berlin Heidelberg New York.

    Google Scholar 

  • Tinz-Fruchtmeyer A, Gradmann D (1990) Laser-interferometric re-examination of rapid conductance of excitation in Mimosa pudica. J Exp Bot 41:15–19.

    CrossRef  Google Scholar 

  • Trewawas A (2003) Aspects of plant intelligence. Ann Bot 92:1–20.

    CrossRef  CAS  Google Scholar 

  • Umrath K (1930) Untersuchungen über Plasma und Plasamstromung a Characeen. IV. Potentialmessungen an Nitella mucronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma 9:576–597.

    CrossRef  Google Scholar 

  • Umrath K (1932) Der Erregungsvorgang bei Nitella mucronata. Protplasma 17:258–300.

    CrossRef  Google Scholar 

  • Van Bel AJE (2003) The phloem, a miracle of ingenuity. Plant Cell Environm 26:125–149.

    CrossRef  Google Scholar 

  • Volkov AG (2000) Green plants: electrochemical interfaces. J Electroanal Chem 483:150–156.

    CrossRef  CAS  Google Scholar 

  • Volkov AG, Haack RA (1995) Insect induced bioelectrochemical signals in potato plants. Bioelectrochem Bioenerg 35:55–60.

    CrossRef  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with a special emphasis on Characeae internode cells. Bot Rev 60:265–367.

    CrossRef  CAS  PubMed  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signaling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65.

    CrossRef  CAS  Google Scholar 

  • Wipf D, Ludewig U, Teqeder M, Rentsch D, Koch W, Frommer WB (2002) Conservation of amino acid transporters in fungi, plants and animals. Trends Biochem Sci 27:139–147.

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stahlberg, R. (2006). Historical Introduction to Plant Electrophysiology. In: Volkov, A.G. (eds) Plant Electrophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37843-3_1

Download citation

Publish with us

Policies and ethics