Skip to main content

Allgemeine Aspekte der Biologie von Parasiten

  • Chapter
Biologie der Parasiten

Part of the book series: Springer-Lehrbuch ((SLB))

  • 5559 Accesses

Abstract

Parasiten sind Lebewesen, die in oder auf einem artfremden Organismus leben und von ihm Nahrung beziehen und ihn schädigen. Diese Definition wird auf Tiere, Pflanzen, Pilze, Bakterien und Viren angewendet, die als Gast in Abhängigkeit von einem Wirt leben. Dabei wird der Wirt geschädigt. Im Deutschen entspricht das Wort „Schmarotzer“ dem Begriff des Parasiten. Der Parasitismus ist eine der erfolgreichsten und am weitesten verbreiteten Lebensweisen. Manche Autoren schätzen, dass mehr als 50% aller Lebewesen parasitär sind oder zumindest eine parasitische Phase in ihrem Leben haben. Dafür fehlen zwar exakte Belege, aber die Annahme leuchtet ein angesichts der Tatsache, dass in oder an fast jedem mehrzelligen Tier mehrere Parasiten leben, die spezifisch an diesen Wirt angepasst sind. Einige der wichtigsten Humanparasiten sind in Tabelle 1.1 aufgeführt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Abschnitt 1.1

  • Bush AO, Fernández JC, Esch GW, Seed JR (2001) Parasitism. The diversity and ecology of animal parasites. Cambridge Univ Press, Cambridge

    Google Scholar 

  • Enzensberger U (2001) Parasiten. Ein Sachbuch. Eichborn, Frankfurt/M

    Google Scholar 

  • Hiepe T (2005) Parasitismus als Lebensform – eine Einführung. In: Hiepe T, Lucius R, Gottstein B (Hrsg) Allgemeine Parasitologie. Parey, Stuttgart

    Google Scholar 

  • Kassai T, Cordero del Campillo M, Euzeby J, Gaafar S, Hiepe T, Himonas CA (1988) Standardized nomenclature of animal parasitic diseases (SNOAPAD). Veter Parasitol 29:299–326

    Article  CAS  Google Scholar 

  • Lucius R, Loos-Frank B (1997) Parasitologie. Spektrum Akademischer Verlag, Heidelberg Berlin

    Google Scholar 

  • Mehlhorn H, Piekarski G (2002) Grundriss der Parasitenkunde. Parasiten des Menschen und der Nutztiere (6. Aufl). Spektrum Akademischer Verlag, Heidelberg, Berlin

    Google Scholar 

Abschnitt 1.2

  • Dogiel VA (1963) Allgemeine Parasitologie. Teil I–III, VEB Gustav Fischer, Jena

    Google Scholar 

  • Harvey SC, Gemmill AW, Read AF, Viney ME (2000) The control of morph development in the parasitic nematode Strongyloides ratti. Proc Roy Soc Lond B 267:2057–2063

    Article  CAS  Google Scholar 

  • Hesse R, Doflein F (1943) Tierbau und Tierleben, 2. Band. Gustav Fischer. Jena

    Google Scholar 

  • Kurtz J (2003) Sex, parasites and resistance–an evolutionary approach. Zoology 106:327–39

    Article  PubMed  Google Scholar 

  • Osche G (1966). Die Welt der Parasiten. Zur Naturgeschichte des Schmarotzertums. Verständliche Wissenschaft 87. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Toft CA, Aeschlimann A, Bolis L (1991) Parasite-Host-Associations. Coexistence or conflict? Oxford Univ Press, London

    Google Scholar 

  • Wedekind C, Strahm D, Schärer L (1998) Evidence for strategic egg production in a hermaphoditic cestode. Parasitology 117:373–382

    Article  PubMed  Google Scholar 

Abschnitt 1.3

  • Richner H, Oppliger A, Christie P (1993) Effect of an ectoparasite on reproduction in great tits. J Animal Ecol 62:703–10

    Article  Google Scholar 

  • Hudson PJ, Dobson AP, Newborn D (1999) Prevention of population cycles by parasite removal. Science 282:2256–2258

    Article  Google Scholar 

  • Knopf K, Mahnke M (2004) Differences in susceptibility of the European eel (Anguilla anguilla) and the japanese eel (Anguilla japonica) to the swim-bladder nematode Anguillicola crassus. Parasitol 129:49–96

    Google Scholar 

  • Oldroyd BP (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of Western honeybees. TREE 14:312–315

    PubMed  Google Scholar 

  • Rinderer TE, Guzman LI, Delatte GT, Stelzer JA, Lancaster VA, Kutznetsov V, Beaman L, Watts R, Harris JW (2001) Resistance to the parasitic mite Varroa destructor in honey bees from far-eastern Russia. Apidol 32:81–394

    Article  Google Scholar 

  • Torchin ME, Lafferty KD, Kuris AM (2001) Release from parasites as natural enemies: increased performance of a globally introduced marine crab. Biol Invas 3:333–345

    Article  Google Scholar 

Abschnitt 1.4

  • Dawkins R, Krebs JR (1979) Arms races between and within species. Proc R Soc Lond. B 205:489–511

    Article  PubMed  CAS  Google Scholar 

  • Dawkins R (1994) Das egoistische Gen. Rowohlt Taschenbuch, Reinbeck

    Google Scholar 

  • Howard RS, Curtis ML (1994) Parasitism, mutation and the maintenance of sex. Nature 367:554–557

    Article  PubMed  CAS  Google Scholar 

  • Joy DA, Feng X, Mu J, Furuya T, Chotivanich K, Krettli A, Ho M, Wang A, White NJ, Suh E, Beerli P, Su A (2003) Early origin and recent expansion of Plasmodium falciparum. Nature 300:318–321

    CAS  Google Scholar 

  • Paterson AM, Palma RL, Gray RD (1999) How frequently do avian lice miss the boat? Implications for coevolutionary studies. Syst Biol 48:214–223

    Article  Google Scholar 

  • Poulin R, Skorping R, Poulin R (eds) (2000) Evolutionary biology of host-parsite-relationships: Theory meets reality (clinics in physical therapy). Developments in Animal and Veterinary Sciences, Elsevier, Amsterdam

    Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton Univ Press, Princeton/NJ

    Google Scholar 

  • Richner H, Schmid-Hempel P (2006) Grundlagen der Parasit-Wirt-Koevolution. In: Hiepe T, Lucius R, Gottstein B (Hrsg) Allgemeine Parasitologie. Parey, Stuttgart

    Google Scholar 

  • Segal S. Hill AVS (2003) Genetic susceptibility to infectious disease. Trends in Microbiol 11:445–448

    Article  CAS  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. Univ of Chicago Press, Chicago London

    Google Scholar 

Abschnitt 1.5

  • Clayton DH (1991) The Influence of Parasites on sexual host selection. Parasitol 7:329–334

    CAS  Google Scholar 

  • Ehmann KD, Scott ME (2002) Female mice mate preferentially with non-parasitized males. Parasitol 125:461–466

    Article  Google Scholar 

  • Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: A role for parasites? Science 218:384–387

    Article  PubMed  CAS  Google Scholar 

  • Kavaliers M, Choleris E, Agmo A, Pfaff DE (2004) Olfactory-mediated parasite recognition and avoidance: linking genes to behaviour. Hormones Behav 46:272–283

    Article  Google Scholar 

  • Milinski M, Bakker TCM (1990) Female sticklebacks use male coloration in mate choice and hence avoid parasitized males. Nature 344:330–333

    Article  Google Scholar 

  • Moeller AP (1994) Parasites and sexual selection. In: Sexual selection and the barn swallow. Oxford Univ Press, Oxford

    Google Scholar 

Abschnitt 1.6

  • Dalton JP, Brindley PJ, Knox DP, Brady CP, Hotez PJ, Donelly S, O’Neill SM, Mulcahy G, Loukas A (2003) Helminth vaccines: from mining genomic information for vaccine targets to systems used for protein expression. Intern J Parasitol 33:621–640

    Article  CAS  Google Scholar 

  • Lucius R (2005) Immunbiologie von Parasiteninfektionen. In: Hiepe T, Lucius R, Gottstein B (Hrsg) Allgemeine Parasitologie. Parey, Stuttgart

    Google Scholar 

  • Lynch NR, Hagel I, Perez M, Prisco MC, Lopez R, Alvarez N (1993) Effect of anthelminthic treatment on the allergic reactivity of children in a tropical slum. J Allergy Clin Immunol 92:404–411

    Article  PubMed  CAS  Google Scholar 

  • Maizels RM (2005) Infections and allergy – helminths, hygiene and host immune regulation. Curr Opin Immunol 17:656–661

    Article  PubMed  CAS  Google Scholar 

  • Malkin E, Dubovsky F, Moree M (2006) Progress towards the development of malaria vaccines. Trends Parasitol 22:292–295

    Article  PubMed  Google Scholar 

  • Melendez AJ, Harnett MM, Pushparaj PN, Wong WSF, Tay HK, McSharry CP, Harnett W (2007) Inhibition of FceRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nature Medicine, advance online publication

    Google Scholar 

  • Müller N, Lucius R (2005) Antiparasitäre Impfstoffe. In: Hiepe T, Lucius R, Gottstein B (Hrsg) Allgemeine Parasitologie. Parey, Stuttgart

    Google Scholar 

  • Presber W (2005) Opportunitische Erreger. In: Hiepe T, Lucius R, Gottstein B (Hrsg) Allgemeine Parasitologie. Parey, Stuttgart

    Google Scholar 

  • Sacks D, Sher A (2002) Evasion of innate immunity by parasitic protozoa. Nature Immunology 3:1041–1047

    Article  PubMed  CAS  Google Scholar 

  • Solbach W, Lucius R (2005) Parasite evasion (incl. helminths). In: Kaufmann S, Steward M (eds) Topley and Wilson – Microbiology and microbial infections. Immunology Volume, Edward Arnold, London

    Google Scholar 

  • Summers RW, Elliott DE, Urban JF, Thompson RA, Weinstock JV (2005) Trichuris suis therapy for active ulcerative colitis: a randomized controlled trial. Gastroenterology128:825–832

    Article  PubMed  Google Scholar 

  • Summers RW, Elliott DE, Urban JR, Thompson R, Weinstock JV (2005) Trichuris suis therapy in Crohn’s disease. Gut 54:87–90

    Article  PubMed  CAS  Google Scholar 

  • van den Biggelaar AH, van Ree R, Rodrigues LC, Lell B, Deelder AM, Kremsner PG, Yazdanbakhsh M (2000) Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. Lancet 356:1723–1727

    Article  PubMed  Google Scholar 

  • Wilson MS, Taylor MD, Balic A, Finney CA, Lamb JR, Maizels RM (2005) Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J Exp Med 202:1199–1212

    Article  PubMed  CAS  Google Scholar 

Abschnitt 1.7

  • Adamo SA (2002) Modulating the modulators: Parasites, neuromodulators and behavioral change. Brain Behav Evol 60:370–377

    Article  PubMed  Google Scholar 

  • Baldauf AS, Thünken T, Frommen JG, Bakker TCM, Heupel O, Kullmann H (2007) Infection with an acanthocephalan manipulates an amphipod’s reaction to a fish predator’s odours. Int J Parasitol 37:61–65

    Article  PubMed  Google Scholar 

  • Biron DG, Marché L, Ponton F, Loxdale HD, Galeotti N, Renault L, Joly C, Thomas F (2005) Behavioural manipulation in a grasshopper harbouring hairworm: a proteomics approach. Proc Roy Soc B 272:2117–2126

    Article  CAS  Google Scholar 

  • Dunn AM, Adams J, Smith JE (1993) Transovarial transmission and sex ratio distortion by a microsporidian parasite in a shrimp. J Invert Pathol 61:248–252

    Article  Google Scholar 

  • Hoek RM, van Kesteren RE, Smit AB, de Jong-Brink M, Geraerts WPM (1997) Altered gene expression in the host brain caused by a trematode parasite: Neuropeptides are preferentially affected during parasitosis. PNAS 94:14072–14076

    Article  PubMed  CAS  Google Scholar 

  • Hurd H (1990) Physiological and behavioural interactions between parasites and invertebtae hosts. Adv Parasitol 29:271–319

    PubMed  CAS  Google Scholar 

  • Koella JC (1999) An evolutionary view of the interactions between anopheline mosquitoes and malaria parasites. Microbes Infect 1: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Moore J (1984) Parasites that change the behavior of their host. Scientific American 250: 2–89

    Article  Google Scholar 

  • Moore J (2002) Parasites and the behaviour of animals. Oxford Univ Press, New York

    Google Scholar 

  • Moorthy VS, Good MF, Hill AVS (2004) Malaria vaccine development. Lancet 363:150–156

    Article  PubMed  Google Scholar 

  • Morales-Montor J, Larralde C (2005) The role of sex steroids in the complex physiology of the host-parasite-relationship: The case of the larval cestode Taenia crassiceps. Parasitol 131:287–294

    Article  CAS  Google Scholar 

  • Piekarski G, Zippelius HM, Witting PA (1978) Auswirkung einer latenten Toxoplasma-Infektion auf das Lernvermögen von weißen Laboratoriumsratten und -mäusen. Z Parasitenkd 57:1–15

    Article  PubMed  CAS  Google Scholar 

  • Romig T, Lucius R, Frank W (1980) Cerebral larvae in the second intermediate host of Dicrocoelium dendriticum (Rudolphi, 1816) and Dicrocoelium hospes Looss, 1907 (Trematodes, Dicrocoeliidae). Z Parasitenkd 63, 277–286

    Article  PubMed  CAS  Google Scholar 

  • Schaub GA (1989) Auswirkungen von Parasiten auf das Verhalten ihrer Wirte. BIUZ 19:196–202

    Article  Google Scholar 

  • Schlein Y, Jacobson RL, Messner G (1992) Leishmania infections damage the feeding mechanism of the sandfly vector and implement parasite transmission by bite. PNAS 89:9944–9948

    Article  PubMed  CAS  Google Scholar 

  • Smith Trail DR (1980) Behavioral Interactions between parasites and hosts: host suicide and the development of complex life cycles. American Naturalist 116:77–91

    Article  Google Scholar 

  • Vyas A, Kim S-K, Giacomini M, Boothroydt JC, Sapolsky RM (2007) Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odor. PNAS 104:6442–6447

    Article  PubMed  CAS  Google Scholar 

  • Webb TJ, Hurd H (1999) Direct manipulation of insect reproduction by agents of parasite origin. Proc R Soc Lond B 266:1537–1541

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2008). Allgemeine Aspekte der Biologie von Parasiten. In: Biologie der Parasiten. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37709-2_1

Download citation

Publish with us

Policies and ethics