Corneal Haze after Refractive Surgery

  • David Fahd
  • José de la Cruz
  • Sandeep Jain
  • Dimitri Azar


  • Loss of corneal clarity (haze) after refractive surgery can be a serious condition, leading to decrease in VA, myopic regression and irregular astigmatism.

  • Most cases of post-PRK haze are clinically insignificant and self-limiting.

  • In addition to haze post-PRK, haze can also be seen after LASIK, epi-LASIK, and LASEK.

  • Haze is due to abnormal collagen deposition and decreased corneal refractility.

  • Grading, as described by Fantes et al., is necessary for proper management.

  • Adequate follow-up postoperatively can detect and help prevent development of haze.

  • MMC can adequately prevent and treat haze after refractive surgery.


Excimer Laser Refractive Surgery Photorefractive Keratectomy Haze Formation Corneal Haze 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lohmann CP et al (1992) Corneal light scattering after excimer laser photorefractive keratectomy: the objective measurements of haze. Refract Corneal Surg 8:114–21PubMedGoogle Scholar
  2. 2.
    Hayashida Y et al (2006) Transplantation of tissue-engineered epithelial cell sheets after excimer laser photoablation reduces postoperative corneal haze. Invest Ophthalmol Vis Sci 47:552–557PubMedCrossRefGoogle Scholar
  3. 3.
    Hersh PS, Abbassi R(1999) Surgically induced astigmatism after photorefractive keratectomy and laser in situ keratomileusis. Summit PRK-LASIK Study Group. J Cataract Refract Surg 25:389–398PubMedCrossRefGoogle Scholar
  4. 4.
    El-Maghraby A et al (1999) Randomized bilateral comparison of excimer laser in situ keratomileusis and photorefractive keratectomy for 2.50 to 8.00 diopters of myopia. Ophthalmology 106:447–457PubMedCrossRefGoogle Scholar
  5. 5.
    Fantes FE et al (1990) Wound healing after excimer laser keratomileusis (photorefractive keratectomy) in monkeys. Arch Ophthalmol 108:665–675PubMedGoogle Scholar
  6. 6.
    Netto MV et al (2005) Wound healing in the cornea: a review of refractive surgery complications and new prospects for therapy. Cornea 24:509–522PubMedCrossRefGoogle Scholar
  7. 7.
    Stephenson CG et al (1998) Photorefractive keratectomy: a 6-year follow-up study. Ophthalmology 105:273–281PubMedCrossRefGoogle Scholar
  8. 8.
    Winkler von Mohrenfels C, Reischl U, Lohmann CP (2002) Corneal haze after photorefractive keratectomy for myopia: role of collagen IV mRNA typing as a predictor of haze. J Cataract Refract Surg 28:1446–1451PubMedCrossRefGoogle Scholar
  9. 9.
    Mohan RR et al (2003) Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Exp Eye Res 76:71–87PubMedCrossRefGoogle Scholar
  10. 10.
    Rajan MS et al (2006) Effects of ablation diameter on long-term refractive stability and corneal transparency after photorefractive keratectomy. Ophthalmology 113:1798–1806PubMedCrossRefGoogle Scholar
  11. 11.
    Netto MV et al (2006) Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res 82:788–797PubMedCrossRefGoogle Scholar
  12. 12.
    Chen C et al (2000) Measurement of mRNAs for TGFss and extracellular matrix proteins in corneas of rats after PRK. Invest Ophthalmol Vis Sci 41:4108–4116PubMedGoogle Scholar
  13. 13.
    Jester JV et al (1999) The cellular basis of corneal transparency: evidence for “corneal crystallins”. J Cell Sci 112:613–622PubMedGoogle Scholar
  14. 14.
    Moller-Pedersen T et al (1998) Confocal microscopic characterization of wound repair after photorefractive keratectomy. Invest Ophthalmol Vis Sci 39:487–501PubMedGoogle Scholar
  15. 15.
    Moller-Pedersen T et al (1998) Neutralizing antibody to TGF-beta modulates stromal fibrosis but not regression of photoablative effect following PRK. Curr Eye Res 17:736–747PubMedCrossRefGoogle Scholar
  16. 16.
    Braunstein RE et al (1996) Objective measurement of corneal light scattering after excimer laser keratectomy. Ophthalmology 103:439–443PubMedGoogle Scholar
  17. 17.
    O’Brart DP et al (1995) The effects of ablation diameter on the outcome of excimer laser photorefractive keratectomy. A prospective, randomized, double-blind study. Arch Ophthalmol 113:438–443PubMedGoogle Scholar
  18. 18.
    Corbett MC et al (1996) Effect of ablation profile on wound healing and visual performance 1 year after excimer laser photorefractive keratectomy. Br J Ophthalmol 80:224–234PubMedCrossRefGoogle Scholar
  19. 19.
    Moller-Pedersen T et al (1998) Corneal haze development after PRK is regulated by volume of stromal tissue removal. Cornea 17:627–639PubMedCrossRefGoogle Scholar
  20. 20.
    Long Q et al (2006) Correlation between TGF-beta1 in tears and corneal haze following LASEK and epi-LASIK. J Refract Surg 22:708–712PubMedGoogle Scholar
  21. 21.
    O’Brart DP et al (1994) Excimer laser photorefractive keratectomy for myopia: comparison of 4.00-and 5.00-millimeter ablation zones. J Refract Corneal Surg 10:87–94PubMedGoogle Scholar
  22. 22.
    Lipshitz I et al (1997) Late onset corneal haze after photorefractive keratectomy for moderate and high myopia. Ophthalmology 104:369–373; discussion 373–374PubMedGoogle Scholar
  23. 23.
    Hersh PS et al (1997) Results of phase III excimer laser photorefractive keratectomy for myopia. The Summit PRK Study Group. Ophthalmology 104:1535–1553PubMedGoogle Scholar
  24. 24.
    Shah S, Chatterjee A, Smith RJ (1998) Predictability of spherical photorefractive keratectomy for myopia. Ophthalmology 105:2178–2184; discussion 2184–2185PubMedCrossRefGoogle Scholar
  25. 25.
    Siganos DS, Katsanevaki VJ, Pallikaris IG (1999) Correlation of subepithelial haze and refractive regression 1 month after photorefractive keratectomy for myopia. J Refract Surg 15:338–342PubMedGoogle Scholar
  26. 26.
    Kuo IC, Lee SM, Hwang DG (2004) Late-onset corneal haze and myopic regression after photorefractive keratectomy (PRK). Cornea 23:350–355PubMedCrossRefGoogle Scholar
  27. 27.
    Taylor SM et al (1994) Effect of depth-upon the smoothness of excimer laser corneal ablation. Optom Vis Sci 71:104–108PubMedCrossRefGoogle Scholar
  28. 28.
    Vinciguerra P et al (1998) A method for examining surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis: predictor of optical and functional outcomes. J Refract Surg 14(2 Suppl):S204–S206PubMedGoogle Scholar
  29. 29.
    Vinciguerra P et al (1998) Effect of decreasing surface and interface irregularities after photorefractive keratectomy and laser in situ keratomileusis on optical and functional outcomes. J Refract Surg 14(2 Suppl):S199–S203PubMedGoogle Scholar
  30. 30.
    Pallikaris IG et al (1999) Photorefractive keratectomy with a small spot laser and tracker. J Refract Surg 15:137–144PubMedGoogle Scholar
  31. 31.
    Olsen T (1982) Light scattering from the human cornea. Invest Ophthalmol Vis Sci 23:81–86PubMedGoogle Scholar
  32. 32.
    Soya K, Amano S, Oshika T (2002) Quantification of simulated corneal haze by measuring back-scattered light. Ophthalmic Res 34:380–388PubMedCrossRefGoogle Scholar
  33. 33.
    Sasaki K et al (1990) The multi-purpose camera: a new anterior eye segment analysis system. Ophthalmic Res 22(Suppl 1):3–8PubMedCrossRefGoogle Scholar
  34. 34.
    Jalbert I et al (2003) In vivo confocal microscopy of the human cornea. Br J Ophthalmol 87:225–326PubMedCrossRefGoogle Scholar
  35. 35.
    Nagel S, Wiegand W, Thaer AA (1995) [Corneal changes and corneal healing after keratomileusis in situ. In vivo studies using confocal slit-scanning microscopy]. Ophthalmologe 92:397–401PubMedGoogle Scholar
  36. 36.
    Nagel S et al (1996) [Light scattering study of the cornea in contact lens patients. In vivo studies using confocal slit scanning microscopy]. Ophthalmologe 93:252–256PubMedGoogle Scholar
  37. 37.
    Slowik C et al (1996) Assessment of corneal alterations following laser in situ keratomileusis by confocal slit scanning microscopy. Ger J Ophthalmol 5:526–531PubMedGoogle Scholar
  38. 38.
    Moller-Pedersen T et al (1997) Quantification of stromal thinning, epithelial thickness, and corneal haze after photorefractive keratectomy using in vivo confocal microscopy. Ophthalmology 104:360–368PubMedGoogle Scholar
  39. 39.
    Ciancaglini M et al (2001) Morphological evaluation of Schnyder’s central crystalline dystrophy by confocal microscopy before and after phototherapeutic keratectomy. J Cataract Refract Surg 27:1892–1895PubMedCrossRefGoogle Scholar
  40. 40.
    Lee JS, Oum BS, Lee SH (2001) Mitomycin C influence on inhibition of cellular proliferation and subsequent synthesis of type I collagen and laminin in primary and recurrent pterygia. Ophthalmic Res 33:140–146PubMedCrossRefGoogle Scholar
  41. 41.
    Watanabe J et al (1997) Effects of mitomycin C on the expression of proliferating cell nuclear antigen after filtering surgery in rabbits. Graefes Arch Clin Exp Ophthalmol 235:234–240PubMedCrossRefGoogle Scholar
  42. 42.
    Pinilla I et al (1998) Subconjunctival injection of low doses of mitomycin C: effects on fibroblast proliferation. Ophthalmologica 212:306–309PubMedCrossRefGoogle Scholar
  43. 43.
    Carones F et al (2002) Evaluation of the prophylactic use of mitomycin-C to inhibit haze formation after photorefractive keratectomy. J Cataract Refract Surg 28:2088–2095PubMedCrossRefGoogle Scholar
  44. 44.
    Talamo JH et al (1991) Modulation of corneal wound healing after excimer laser keratomileusis using topical mitomycin C and steroids. Arch Ophthalmol 109:1141–1146PubMedGoogle Scholar
  45. 45.
    Akarsu C, Onol M, Hasanreisoglu B (2003) Effects of thick Tenon’s capsule on primary trabeculectomy with mitomycin-C. Acta Ophthalmol Scand 81:237–241PubMedCrossRefGoogle Scholar
  46. 46.
    Oguz H (2003) Mitomycin C and pterygium excision. Ophthalmology 110:2257–2258; author reply 2258PubMedCrossRefGoogle Scholar
  47. 47.
    Gambato C et al (2005) Mitomycin C modulation of corneal wound healing after photorefractive keratectomy in highly myopic eyes. Ophthalmology 112:208–218; discussion 219PubMedCrossRefGoogle Scholar
  48. 48.
    Netto MV, Chalita MR, Krueger RR (2007) Corneal haze following PRK with mitomycin C as a retreatment versus prophylactic use in the contralateral eye. J Refract Surg 23:96–98PubMedGoogle Scholar
  49. 49.
    Azar DT, Jain S (2001) Topical MMC for subepithelial fibrosis after refractive corneal surgery. Ophthalmology 108:239–40PubMedCrossRefGoogle Scholar
  50. 50.
    Bedei A et al (2006) Photorefractive keratectomy in high myopic defects with or without intraoperative mitomycin C: 1-year results. Eur J Ophthalmol 16:229–234PubMedGoogle Scholar
  51. 51.
    Stojanovic A, Ringvold A, and Nitter T (2003) Ascorbate prophylaxis for corneal haze after photorefractive keratectomy. J Refract Surg 19:338–343PubMedGoogle Scholar
  52. 52.
    O’Brart D.P et al (1994) The effects of topical corticosteroids and plasmin inhibitors on refractive outcome, haze, and visual performance after photorefractive keratectomy. A prospective, randomized, observer-masked study. Ophthalmology 101:1565–1574PubMedGoogle Scholar
  53. 53.
    Rajan MS et al (2204) Effect of exogenous keratinocyte growth factor on corneal epithelial migration after photorefractive keratectomy. J Cataract Refract Surg 30:2200–2206CrossRefGoogle Scholar
  54. 54.
    Majmudar PA et al (2000) Topical mitomycin-C for subepithelial fibrosis after refractive corneal surgery. Ophthalmology 107:89–94PubMedCrossRefGoogle Scholar
  55. 55.
    Raviv T et al (2000) Mytomycin-C for post-PRK corneal haze. J Cataract Refract Surg 26:1105–1106PubMedCrossRefGoogle Scholar
  56. 56.
    Epstein D et al (1994) Excimer retreatment of regression after photorefractive keratectomy. Am J Ophthalmol 117:456–461PubMedGoogle Scholar
  57. 57.
    Horgan SE et al (1999) Phototherapeutic smoothing as an adjunct to photorefractive keratectomy in porcine corneas. J Refract Surg 15:331–333PubMedGoogle Scholar
  58. 58.
    Serrao S, Lombardo M, Mondini F (2003) Photorefractive keratectomy with and without smoothing: a bilateral study. J Refract Surg 19:58–64PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Fahd
    • 1
  • José de la Cruz
    • 2
  • Sandeep Jain
    • 2
  • Dimitri Azar
    • 1
  1. 1.Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear InfirmaryUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear InfirmaryUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations