Skip to main content

Haptic Feedback Enhancement Through Adaptive Force Scaling: Theory and Experiment

  • Chapter
Advances in Robot Control

Abstract

We report the development, implementation, and evaluation of a novel application of robot force control called position based force scaling. Force scaling employs position based force control algorithms to augment human haptic feedback during human-robot co-manipulation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riviere CN, Khosla PK (1996) Accuracy of positioning in handheld instruments. In: Proc. of the 18th Conf. of the IEEE Engineering in Medicine and Biology Society. 212–213

    Google Scholar 

  2. Riviere CN, Rader PS, Khosla PK (1997) Characteristics of hand motion of eye surgeons. In: Proc. of the 19th Conf. of the IEEE Engineering in Medicine and Biology Society, Chicago 1690–1693

    Google Scholar 

  3. Gupta PK, Jensen PS, deJuan Jr. E (1999) Surgical forces and tactile perception during retinal microsurgery. In: Medical Image Computing and Computer- Assisted Interventions (MICCAI), Cambridge, England 1218–1225

    Google Scholar 

  4. Charles S (1994) Dexterity enhancement for surgery. In: First International Symposium on Medical Robotics and Computer Assisted Surgery. Volume 2. 145–160

    Google Scholar 

  5. Hughes GB (1991) The learning curve in stapes surgery. Laryngoscope 11:1280–1284

    Article  Google Scholar 

  6. Backous DD, Coker NJ, Jenkins HA (1993) The learning curve revisited: stapedotomy. American Journal of Otology 14:451–454

    Google Scholar 

  7. Sargent EW (2002) The learning curve revisited: Stapedotomy. Otolaryngology—Head and Neck Surgery 126:20–25

    Article  Google Scholar 

  8. Rothbaum DL, Roy J, Hager GD, Taylor RH, Whitcomb LL, Francis HW, Niparko JK (2003) Task performance in stapedotomy: Comparision between surgeons of different experience levels. Otolaryngology—Head and Neck Surgery 128:71–77

    Article  Google Scholar 

  9. Schenker PS (1995) Development of a telemanipulator for dexterity enhanced microsurgery. In: Proceedings of the 2nd International Symposium on Medical Robotics and Computer Assisted Surgery. 81–88

    Google Scholar 

  10. Rothbaum DL, Roy J, Stoianovici D, Berkelman P, Hager GD, Taylor RH, Whitcomb LL, Francis HW, Niparko JK (2002) Robot-assisted stapedotomy: Micropick fenestration of the stapes. Otolaryngology—Head and Neck Surgery 127:417–426

    Article  Google Scholar 

  11. Ho SD, Hibberd R, Davies B (1995) Robot assisted knee surgery. IEEE EMBS Magazine Special Issue on Robotics in Surgery 292–300

    Google Scholar 

  12. Troccaz J, Peshkin M, Davies B (1997) The use of localizers, robots, and synergistic devices in CAS. In: Proc. First Joint Conference of CVRMed and MRCAS, Grenoble 727–736

    Google Scholar 

  13. Taylor RH, Jensen P, Whitcomb LL, Barnes A, Kumar R, Stoianovici D, Gupta P, Wang Z, de Juan E, Kavoussi LR (1999) A steady-hand robotic system for microsurgical augmentation. International Journal of Robotics Research 18(12):1201–1210

    Article  Google Scholar 

  14. Taylor RH, Funda J, Eldridge B, Gruben K, LaRose D, Gomory S, Talamini M (1996) 45. In: A Telerobotic Assistant for Laparoscopic Surgery. MIT Press 581–592

    Google Scholar 

  15. Roy J, Whitcomb LL (2002) Adaptive force control of position/velocity controlled robots: Theory and experiment. IEEE Transactions on Robotics and Automation 18(2):121–137

    Article  Google Scholar 

  16. Kumar R, Berkelman P, Gupta P, Barnes A, Jensen P, Whitcomb LL, Taylor RH (2000) Preliminary experiments in cooperative human/robot force control for robot assisted microsurgical manipulation. In: Proceedings of the IEEE International Conference on Robotics and Automation. 610–617

    Google Scholar 

  17. Taylor RH, Paul HA, Kazandzides P, Mittelstadt BD, Hanson W, Zuhars JF, Williamson B, Musits BL, Glassman E, Bargar WL (1994) An image-directed robotics system for precise orthopedic surgery. IEEE Transactions on Robotics and Automation 10(3):261–275

    Article  Google Scholar 

  18. Kazerooni H (1989) Human/robot interaction via the transfer of power and information signals — Part I: dynamics and control analysis. In: Proceedings of IEEE International Conference on Robotics and Automation. Volume 3. 1632–1640

    Google Scholar 

  19. Kazerooni H (1989) Human/robot interaction via the transfer of power and information signals — Part II: an experimental analysis. In: Proceedings of IEEE International Conference on Robotics and Automation. Volume 3. 1641–1649

    Google Scholar 

  20. Kazerooni H, Guo J (1993) Human extenders. ASME Journal Dynamic Systems, Measurement, and Control 115:281–290

    Article  Google Scholar 

  21. De Schutter J, Van Brussel H (1988) Compliant robot motion II. A control approach based on external control loops. The International Journal of Robotics Research 7(4):18–33

    Article  Google Scholar 

  22. Roy J, Whitcomb LL (2002) Adaptive hybrid force/position control of multidimensional position controlled robots: Theory and experiment. Manuscript in preparation. Preprint Available at http://robotics.me.jhu.edu/~roy

    Google Scholar 

  23. Stoianovici D, Whitcomb LL, Anderson JH, Taylor RH, Kavoussi LR (1998) A modular surgical system for image guided percutaneous procedures. In Wells WM, Colchester A, Delp S, eds.: Lecture Notes in Computer Science 1496: Medical Imaging and Computer-Assisted Intervention—MICCAI'98. Volume 1496. Springer-Verlag, Berlin, Germany 404–410

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Roy, J., Rothbaum, D.L., Whitcomb, L.L. (2006). Haptic Feedback Enhancement Through Adaptive Force Scaling: Theory and Experiment. In: Kawamura, S., Svinin, M. (eds) Advances in Robot Control. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37347-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37347-6_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37346-9

  • Online ISBN: 978-3-540-37347-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics