Advertisement

Torsional Resonance Microscopy and Its Applications

Chapter
Part of the NanoScience and Technology book series (NANO)

6.7 Conclusion

Torsional resonance microscope provides dynamic information of the tip-sample interaction in lateral dimensions. Since the tip displacement amplitude can be as low as subnanometers, it reflects near-field interaction due to different mechanisms, such as mechanical, electrical and magnetic interactions. When TRmode is applied in combination with flexural interaction such as TappingMode or contact mode it is possible to study the interaction force and force gradient in both vertical and lateral directions concurrently. TRmode also provides a unique opportunity for electric, magnetic or near-field optical control where the tip needs to stay in close proximity of the surface. When TRmode is applied together with the contact mode one may be able to derive vertical and shear contact stiffness simultaneously. One of the benefits of performing multiple dimensional measurements was to derive elastic anisotropy, independent of the contact area.

The dynamic responses of TRmode were proven to be valuable in determining non-linear harmonics of the TappingMode, dynamic friction and other surface mechanical properties.

Keywords

Contact Mode Force Gradient Magnetic Force Microscope Torsional Response Torsional Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neumeister JM, Ducker WA (1994) Lateral, Normal and Longitudinal Spring Constants of Atomic-Force Microscopy Cantilevers. Rev Sci Instrum 65:2527–2531CrossRefGoogle Scholar
  2. 2.
    Warmack RJ, Zheng XY, Thundat T, Allison DP (1994) Friction Effects in the Deflection of Atomic-Force Microscope Cantilevers. Rev Sci Instrum 65:394–399CrossRefGoogle Scholar
  3. 3.
    Turner J, Hirsekron S, Rabe U, Arnold W (1997) High-Frequency Response of Atomic-Force Microscope Cantilevers. J Appl Phys 82:966–979CrossRefGoogle Scholar
  4. 4.
    Rabe U, Turner J, Arnold W (1998) Analysis of the High-Frequency Response of Atomic Force Microscope Cantilevers. Appl Phys A 66:S277–S282CrossRefGoogle Scholar
  5. 5.
    Stark M, Stark R, Heckl WA, Guckenberger R (2000) Spectroscopy of the Anharmonic Cantilever Oscillations In TappingMode Atomic-Force Microscopy. Appl Phys Lett 77:3293–3295CrossRefGoogle Scholar
  6. 6.
    Stark R, Heckl W (2000) Fourier Transformed Atomic Force Microscopy: TappingMode Atomic Force Microscopy Beyond The Hookian. Surf Sci 457:219–228CrossRefGoogle Scholar
  7. 7.
    Hillenbrand R, Stark M, Guckenberger P (2000) Higher-Harmonics Generation in Tapping-Mode Atomic-Force Microscopy: Insights into the Tip-Sample Interaction. Appl Phys Lett 76:3478–3480CrossRefGoogle Scholar
  8. 8.
    Löhndorf M, Moreland J, Kabos P (2000) Microcantilever Torque Magnetometry of Thin Magnetic Films. J Appl Phys 87:5995–5997CrossRefGoogle Scholar
  9. 9.
    Löhndorf M, Moreland J, Kabos P (2000) Ferromagnetic Resonance Detection with a Torsion-Mode Atomic-Force Microscope. Appl Phys Lett 76:1176–1178CrossRefGoogle Scholar
  10. 10.
    Turner JA, Wiehn JS (2001) Sensitivity of flexural and torsional vibration modes of atomic force microscope cantilevers to surface stiffness variations. Nanotechnology 12:322–330CrossRefGoogle Scholar
  11. 11.
    Green CP, Sader JE (2002) Torsional Frequency Response of Cantilever Beams Immersed in Viscous Fluids with Applications to the Atomic Force Microscope. J Appl Phys 92:6262–6274CrossRefGoogle Scholar
  12. 12.
    Yamanaka K, Takano H, Tomita E, Fujihira M (1996) Lateral Force Modulation Atomic Force Microscopy of Langmuir-Blodgett Film in Water. Jpn J Appl Phys Part 1 Reg Papers Short Notes Rev Papers 35(10):5421–5425Google Scholar
  13. 13.
    Reinstädtler M, Rabe U, Scherer V, Turner JA, Arnold W (2003) Imaging of Flexural and Torsional Resonance Modes of Atomic Force Microscopy Cantilevers Using Optical Interferometry. Surf Sci 532:1152–1158CrossRefGoogle Scholar
  14. 14.
    Caron A, Rabe U, Reinstadtler M, Turner J, Arnold W (2004) Imaging Using Lateral Bending Modes of Atomic Force Microscope Cantilevers. Appl Phys Lett 85:6398–6400CrossRefGoogle Scholar
  15. 15.
    Yamanaka K, Tomita K (1995) Lateral Force Modulation Atomic-Force Microscope for Selective Imaging of Friction Forces. Jpn J Appl Phys Part 1 Reg Papers Short Notes Rev Papers 34(5B):2879–2882Google Scholar
  16. 16.
    Reinstadtler M, Rabe U, Scherer V, Hartmann U, Goldade A, Bhushan B, Arnold W (2003) On the Nanoscale Measurement of Friction Using Atomic-Force Microscope Cantilever Torsional Resonances. Appl Phys Lett 82:2604–2606CrossRefGoogle Scholar
  17. 17.
    Chang W, Fang T, Chou H (2003) Effect of interactive damping on sensitivity of vibration modes of rectangular AFM cantilevers. Phys Lett A 312:158–165CrossRefGoogle Scholar
  18. 18.
    Su C, Huang L, Neilson P, Kelley V (2003) In-situ measurement of in-plane and out-of-plane force gradient with a torsional resonance mode AFM. In: Koenraad PM, Kemerink M (eds.) Scanning Tunneling Microscopy/Spectroscopy And Related Techniques: 12th International Conference, CP696. AIP, Melville, New York, pp. 349–356Google Scholar
  19. 19.
    Su C, Babcock K, Huang L (2005) US Patent 6,945,099Google Scholar
  20. 20.
    Huang L, Su C (2004) Torsional resonance mode imaging for high-speed atomic force microscopy. In: Koenraad PM, Kemerink M (eds.) Scanning Tunneling Microscopy/Spectroscopy And Related Techniques: 12th International Conference, CP696. AIP, Melville, New York, p. 357; (2005) A Torsional Resonance Mode Afm For In-Plane Tip Surface Interactions. Ultramicscopy 100:277–285Google Scholar
  21. 21.
    Kasai T, Bhushan B, Huang L, Su C (2004) Topography and Phase Imaging Using the Torsional Resonance Mode. Nanotechnol 15:731–742CrossRefGoogle Scholar
  22. 22.
    Reinstädtler M, Kasai T, Rabe U, Bhushan B, Arnold W (2005) Imaging and Measurement of Elasticity and Friction Using the TRmode. J Phys D Appl Phys 38:R269–R282CrossRefGoogle Scholar
  23. 23.
    Frisbie C, Rozsnyai A, Noy A, Wrighton M, Lieber C (1994) Functional-Group Imaging by Chemical Force Microscopy. Science 265:2071–2074CrossRefGoogle Scholar
  24. 24.
    Sharos LB, Raman A, Crittenden S, Reifenberger R (2004) Enhanced Mass Sensing Using Torsional and Lateral Resonances in Microcantilevers. Appl Phys Lett 84:4638–4640CrossRefGoogle Scholar
  25. 25.
    Oshea S, Welland M, Wong T (1993) Influence of Frictional Forces on Atomic-Force Microscope Images. Ultramicroscopy 52:55–64CrossRefGoogle Scholar
  26. 26.
    Dedkov GV (2000) Experimental and Theoretical Aspects of the Modern Nanotribology. Phys Status Solid A Appl Res 179:3–75CrossRefGoogle Scholar
  27. 27.
    Maugis D (1992) Adhesion of Spheres: The Jkr-Dmt Transition Using a Dugdale Model. J Colloid Interface Sci 150:243–269CrossRefGoogle Scholar
  28. 28.
    Hoffmann P, Jeffery S, Pethica J, Ozer H, Oral A (2001) Energy Dissipation in Atomic Force Microscopy and Atomic Loss Processes. Phys Rev Lett 87:265502-1 to 265502-4Google Scholar
  29. 29.
    Volokitin AI, Persson BNJ (2005) Adsorbate-Induced Enhancement of Electrostatic Noncontact Friction. Phys Rev Lett 94:086104-1 to 086104-4CrossRefGoogle Scholar
  30. 30.
    Baljon ARC, Robbins MO (1996) Energy Dissipation During Rupture of Adhesive Bonds. Science 271(5248):482–484CrossRefGoogle Scholar
  31. 31.
    Su CM, Huang L, Kjoller K (2004) Direct Measurement of Tapping Force with a Cantilever Deflection Force Sensor. Ultramicroscopy 100(3–4):233–239CrossRefGoogle Scholar
  32. 32.
    Yamanaka K, Nakano S (1998) Quantitative Elasticity Evaluation by Contact Resonance in an Atomic Force Microscope. Appl Phys A Mater Sci Process 66:S313–S317CrossRefGoogle Scholar
  33. 33.
    Rabe U, Kopycinska M, Hirsekorn S, Arnold W (2002) Evaluation of the Contact Resonance Frequencies in Atomic Force Microscopy as a Method for Surface Characterisation (Invited). Ultrasonics 40(1–8):49–54CrossRefGoogle Scholar
  34. 34.
    Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Quantitative Determination of Contact Stiffness Using Atomic Force Acoustic Microscopy. Ultrasonics 38(1–8):430–437CrossRefGoogle Scholar
  35. 35.
    Annis BK, Pedraza DF (1993) Effect of Friction on Atomic-Force Microscopy of Ion-Implanted Highly Oriented Pyrolytic-Graphite. J Vac Sci Technol B 11(5):1759–1765CrossRefGoogle Scholar
  36. 36.
    Kawagishi T, Kato A, Hoshi Y, Kawakatsu H (2002) Mapping of Lateral Vibration of the Tip in Atomic Force Microscopy at the Torsional Resonance of the Cantilever. Ultramicroscopy 91:37–48CrossRefGoogle Scholar
  37. 37.
    Spychalski-Merle A, Krischker K, Göddenhenrich T, Heiden C (2000) Friction Contrast in Resonant Cantilever Vibration Mode. Appl Phys Lett 77:501–503CrossRefGoogle Scholar
  38. 38.
    Antognozzi M, Humphris ADL, Miles MJ (2001) Observation of Molecular Layering in a Confined Water Film and Study of the Layers Viscoelastic Properties. Appl Phys Lett 78:300–302CrossRefGoogle Scholar
  39. 39.
    Brunner R, Marti O, Hollricher O (1999) Influence of Environmental Conditions on Shear-Force Distance Control in Near-Field Optical Microscopy. J Appl Phys 86:7100–7106CrossRefGoogle Scholar
  40. 40.
    Vaccaro L, Bernal MP, Marguis-Weible F, Duschl C (2000) Shear Force Surface Contrast on Self-Assembly Monolayers. Appl Phys Lett 77:3110–3112CrossRefGoogle Scholar
  41. 41.
    Li SH, Li HJ, Wang XB, Song YL, Liu YQ, Jiang L, Zhu DB (2002) Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. J Phys Chem B 106(36):9274–9276CrossRefGoogle Scholar
  42. 42.
    Marcus MS, Carpick RW, Sasaki DY, Eriksson MA (2002) Material Anisotropy Revealed by Phase Contrast in Intermittent Contact Atomic Force Microscopy. Phys Rev Lett 88:226103, 1–4CrossRefGoogle Scholar
  43. 43.
    Grutter P, Meyer E, Heinzelmann H, Rosenthaler L, Hidber H, Guntherodt HJ (1988) Application of Atomic Force Microscopy to Magnetic-Materials. J Vac Sci Technol A Vac Surf Films 6:279–282CrossRefGoogle Scholar
  44. 44.
    Wadas A, Grutter P (1989) Theoretical Approach to Magnetic Force Microscopy. Phys Rev B 39:12013–12017; Wadas A, Hug HJ (1992) Models for the Stray Field from Magnetic Tips Used in Magnetic Force Microscopy. J Appl Phys 72:203–206CrossRefGoogle Scholar
  45. 45.
    Wadas A, Grutter P, Guntherodt HJ (1990) Analysis of In-plane Bit Structure by Magnetic Force Microscopy. J Appl Phys 67:3462–3467CrossRefGoogle Scholar
  46. 46.
    Antognozzi M, Haschke H, Miles MJ (2001) STM’01 Abstract, Vancouver, Canada, 15–20 July 2001, p 439Google Scholar
  47. 47.
    Burnham NA, Colton RJ (1989) Measuring the Nanomechanical Properties and Surface Forces of Materials Using an Atomic Force Microscope. J Vac Sci Tech A 7(4):2906–2913CrossRefGoogle Scholar
  48. 48.
    Israelachvili JN (1992) Intermolecular and Surface Forces: With Applications to Colloidal and Biological Systems, 2nd edn. Academic, LondonGoogle Scholar
  49. 49.
    Magonov SN, Elings V, Whangbo MH (1997) Phase Imaging and Stiffness in TappingMode Atomic Force Microscopy. Surf Sci 375:L385–L391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Veeco InstrumentsSanta BarbaraUSA
  2. 2.Nanotribology Laboratory for Information Storage and MEMS/NEMS (NLIM) W 390 Scott LaboratoryOhio State UniversityColumbusUSA

Personalised recommendations