High-Frequency Dynamic Force Microscopy

Part of the NanoScience and Technology book series (NANO)

5.4 Summary and Outlook

This chapter focused on the emerging trend of high-frequency DFM using small cantilevers or higher vibration modes. The key elements were:
  1. 1.

    Focusing of the laser beam to allow the use of micron-sized cantilevers

  2. 2.

    High-frequency detection where the signal-to-noise ratio is obtained by narrow-band homodyne methods or heterodyne methods

  3. 3.

    Photothermal excitation of the cantilever vibration, which is effective above 10 MHz, and is also effective in water for avoiding spurious signals.

  4. 4.

    Cantilever fabrication methods to realize cantilevers with a spring constant in the 100–1000N/m range, and with a natural frequency in the megahertz range.


The combination of high-frequency DFM and small and stiff cantilevers allows a wider range of imaging parameters to be chosen, resulting in higher resolution and the choice of interaction between the tip and the sample, and represents the future of DFM.


Surface Acoustic Wave Force Gradient Atomic Force Microscope Cantilever Lateral Force Microscopy Cantilever Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930CrossRefGoogle Scholar
  2. 2.
    Giessibl FJ (1995) Atomic resolution of the silicon(111) 7 × 7 surface by atomic force microscopy. Science 267:68CrossRefGoogle Scholar
  3. 3.
    Giessibl FJ (2003) Advances in atomic force microscopy. Rev Mod Phys 75:949CrossRefGoogle Scholar
  4. 4.
    Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668CrossRefGoogle Scholar
  5. 5.
    Akamine S, Barrett RC, Quate CF (1990) Improved atomic force microscope images using microcantilevers with sharp tips. Appl Phys Lett 57:316CrossRefGoogle Scholar
  6. 6.
    Carr DW, Craighead HG (1997) Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography. J Vac Sci Technol B 15(6):2760–2763CrossRefGoogle Scholar
  7. 7.
    Waters RL, Aklufi ME (2002) Micromachined Fabry-Perot interferometer for motion detection. Appl Phys Lett 81:3320CrossRefGoogle Scholar
  8. 8.
    Hoogenboom BW, Frederix PLTM, Yang JL, Martin S. Pellmont Y, Steinacher M, Zaech S, Langenbach E, Heimbeck H-J, Engel A, Hug HJ (2005) A Fabry-Perot interferometer for micrometer-sized cantilevers. Appl Phys Lett 86:074101CrossRefGoogle Scholar
  9. 9.
    Hashiguchi G, Mimaura H (1995) New fabrication method and electrical characteristics of conical silicon field emitters. Jpn J Appl Phys 34:1493CrossRefGoogle Scholar
  10. 10.
    Hashiguchi G, Mimaura H (1994) Fabrication of silicon quantum wires using separation by implanted oxygen wafer. Jpn J Appl Phys 33:L1649CrossRefGoogle Scholar
  11. 11.
    Kawakatsu H, Saya D, Kato A, Fukushima K, Toshiyoshi H, Fujita H (2002) Millions of cantilevers for atomic force microscopy. Rev Sci Instrum 73:1188CrossRefGoogle Scholar
  12. 12.
    Kawakatsu H, Saya D, Fukushima K, Toshiyoshi H, Fujita H (2000) Fabrication of a silicon based nanometric oscillator with a tip form mass for scanning force microscopy operating in the GHz range. J Vac Sci Technol B 16:607CrossRefGoogle Scholar
  13. 13.
    Kawakatsu H, Toshiyoshi H, Saya D, Fujita H (1999) A silicon based nanometric oscillator for scanning force microscopy operating in the 100 MHz range. Jpn J Appl Phys B 6:3962CrossRefGoogle Scholar
  14. 14.
    Saya D, Fukushima K, Toshiyoshi H, Fujita H, Hashiguchi G, Kawakatsu H (2000) Fabrication of silicon-based filiform-necked nanometric oscillators. Jpn J Appl Phys 39:3793CrossRefGoogle Scholar
  15. 15.
    Saya D, Fukushima K, Toshiyoshi H, Hashiguchi G, Fujita H, Kawakatsu H (2002) Fabrication of single-crystal Si cantilever array. Sens Actuators A 95:281CrossRefGoogle Scholar
  16. 16.
    Hashiguchi G, Goda T, Hosogi M, Hirano K, Kaji N, Baba Y, Kakushima K, Fujita H (2003) DNA manipulation and retrieval from an aqueous solution with micromachined nanotweezers. Anal Chem 75:4347–4350CrossRefGoogle Scholar
  17. 17.
    Kim GM, Kawai S, Nagashio M, Kawakatsu H, Brugger J (2004) Nanomechanical structures with 91 MHz resonance frequency fabricated by local deposition and dry etching. J Vac Sci Technol B 22:1658CrossRefGoogle Scholar
  18. 18.
    Yang JL, Despont M, Drechsler U, Hoogenboom BW, Frederix PLTM, Martin S, Engel A, Vettiger P, Hug HJ (2005) Miniaturaized single-crystal silicon cantilevers for scanning force microscopy. Appl Phys Lett 86:134101CrossRefGoogle Scholar
  19. 19.
    Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci USA 98:12468CrossRefGoogle Scholar
  20. 20.
    Olympus Co., Hachioji, TokyoGoogle Scholar
  21. 21.
    Binnig G, Rohrer H, Gerber C, Weibel E (1982) Surface studies by scanning tunneling microscopy. Phys Rev Lett 49:57CrossRefGoogle Scholar
  22. 22.
    Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope force mapping and profiling on a sub 100-Å scale. J Appl Phys 61:4723CrossRefGoogle Scholar
  23. 23.
    Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59:2337CrossRefGoogle Scholar
  24. 24.
    Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045CrossRefGoogle Scholar
  25. 25.
    Kawakatsu H, Saito T (1996) Scanning force microscopy with two optical levers for detection of deformations of the cantilever. J Vac Sci Technol B 14:872–876CrossRefGoogle Scholar
  26. 26.
    Kawakatsu H, Kawai S, Saya D, Nagashio M, Kobayashi D, Toshiyoshi H, Fujita H (2002) Towards atomic force microscopy up to 100 MHz. Rev Sci Instrum 73:2317CrossRefGoogle Scholar
  27. 27.
    Giessibl FJ, Hembacher S, Bielefeldt H, Mannhart J (2000) Subatomic features on the silicon (111)-(7 × 7) surface observed by atomic force microscopy. Science 289:422CrossRefGoogle Scholar
  28. 28.
    Hembacher S, Giessibl FJ, Mannhart J (2004) Force microscopy with Light-Atom probes. Science 305:380CrossRefGoogle Scholar
  29. 29.
    Fukuma T Kobayashi K, Matsushige K, Yamada H (2005) True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl Phys Lett 87:034101CrossRefGoogle Scholar
  30. 30.
    Umeda N, Ishizaki S, Uwai H (1991) Scanning attractive force microscope using photothermal vibration. J Vac Sci Technol B 9:1318CrossRefGoogle Scholar
  31. 31.
    Ando T, Uchihashi T, Kodera NN, Miyagi A, Nakakita R, Yamashita H, Sakashita M (2006) High-speed atomic force microscopy for studying the dynamic behavior of protein molecules at work. Jpn J Appl Phys 45:1897CrossRefGoogle Scholar
  32. 32.
    Kobayashi D, Kawai S, Kawakatsu H (2004) New FM detection techniques for scanning probe microscopy. Jpn J Appl Phys 43:4566CrossRefGoogle Scholar
  33. 33.
    Kawai S, Kitamura S, Kobayashi D, Meguro S, Kawakatsu H (2005) An ultra-small amplitude operation of dynamic force microscopy with second flexural mode. Appl Phys Lett 86:193107CrossRefGoogle Scholar
  34. 34.
    Kawai S, Rose F, Ishii T, Kawakatsu H, Atomically resolved observation of the quenched Si(111) surface with small amplitude dynamic force microscopy. J Appl Phys 99:104312Google Scholar
  35. 35.
    Kawai S, Kawakatsu H (2006) Atomically resolved dynamic force microscopy operating at 4.7 MHz. Appl Phys Lett 88:133103CrossRefGoogle Scholar
  36. 36.
    Kawai S, Kawakatsu H, Atomically resolved amplitude modulation dynamic force microscopy with a high resonance and mechanical quality factor cantilever. Appl Phys Lett 89:013108Google Scholar
  37. 37.
    Hoogenboom BW, Hug HJ, Pellmont Y, Martin S, Frederix PLTM, Fotiadis D, Engel A (2006) Quantitative dynamic-mode scanning force microscopy in liquid. Appl Phys Lett 88:193109CrossRefGoogle Scholar
  38. 38.
    Kawai S, Kawakatsu H (2006) Mechanical atom manipulation with small amplitude dynamic force microscopy. Appl Phys Lett 89:023113CrossRefGoogle Scholar
  39. 39.
    Kawai S, Kitamura S, Kobayashi D, Kawakatsu H (2005) Dynamic lateral force microscopy with true atomic resolution. Appl Phys Lett 87:173105CrossRefGoogle Scholar
  40. 40.
    Giessibl FJ, Herz M, Mannhart J (2002) Friction traced to the single atom. Proc Natl Acad Sci USA 99:12006CrossRefGoogle Scholar
  41. 41.
    Kawai S, Sasaki N, Oshima K, Kawakatsu H, Lateral force gradient mapping and its simulation (unpublished)Google Scholar
  42. 42.
    Yamashita K, Sun W, Kakushima K, Fujita H, Toshiyoshi H (2006) RF microelectromechanical system device with a lateral field-emission detector. J Vac Sci Technol B 24:927CrossRefGoogle Scholar
  43. 43.
    Strozewski KJ, Mc Bride SE, Wetsel GC (1992) High-frequency surface-displacement detection using an STM as a mixer demdulator. Ultramicroscopy 42:388–392CrossRefGoogle Scholar
  44. 44.
    Voigt PU, Koch R (2002) Quantitative geometry of the Rayleigh wave oscillation ellipse by surface acoustic wave scanning tunneling microscopy. J Appl Phys 92:7160CrossRefGoogle Scholar
  45. 45.
    Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy JB, Van Haesendonck C (2004) Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett 4:1775CrossRefGoogle Scholar
  46. 46.
    Dupas E, Gremaud G, Kulik A, Loubet J-L (2001) High-frequency mechanical spectroscopy with an atomic force microscope. Rev Sci Instrum 72:3891CrossRefGoogle Scholar
  47. 47.
    Fukuma T, Kimura K, Kobayashi K, Matsushige K, Yamada H (2004) Dynamic force microscopy at high cantilever resonance frequencies using heterodyne optical beam deflection method. Appl Phys Lett 85:8287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Institute of Industrial ScienceUniversity of TokyoTokyoJapan

Personalised recommendations