Q-controlled Dynamic Force Microscopy in Air and Liquids

Part of the NanoScience and Technology book series (NANO)


Resonance Curve Sample Interaction Enhance Image Quality Sample Force Dynamic Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binnig G, Quate CF, Gerber Ch (1986) Atomic forcemicroscopy. Phys Rev Lett 56:930–933CrossRefGoogle Scholar
  2. 2.
    Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-Å scale. J Appl Phys 61:4723–4729CrossRefGoogle Scholar
  3. 3.
    Zhong QD, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692CrossRefGoogle Scholar
  4. 4.
    Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley L, Elings VB (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740CrossRefGoogle Scholar
  5. 5.
    Putman CAJ, Vanderwerf KO, Degrooth BG, Vanhulst NF, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl Phys Lett 64:2454–2456CrossRefGoogle Scholar
  6. 6.
    Anczykowski B, Cleveland JP, Krüger D, Elings VB, Fuchs H (1998) Analysis of the interaction mechanisms in dynamicmode SFM by means of experimental data and computer simulation. Appl Phys A 66:S885–S889CrossRefGoogle Scholar
  7. 7.
    Tamayo J, Humphris ADL, Miles MJ (2000) Piconewton regime dynamic force microscopy in liquid. Appl Phys Lett 77:582–584CrossRefGoogle Scholar
  8. 8.
    Humphris ADL, Tamayo J, Miles MJ (2000) Active quality factor control in liquids for force spectroscopy. Langmuir 16:7891–7894CrossRefGoogle Scholar
  9. 9.
    Grant A and McDonnell L (2003) Anon-contact mode scanning forcemicroscope optimised to image biological samples in liquid. Ultramicroscopy 97:177–184CrossRefGoogle Scholar
  10. 10.
    Ebeling D, Hölscher H, Fuchs H, Anczykowski B, Schwarz UD (2006) Imaging of biomaterials in liquids: a comparison between conventional and Q-controlled amplitude modulation (“tapping mode”) atomic force microscopy. Nanotechnology 17:S221–S226CrossRefGoogle Scholar
  11. 11.
    Sulchek T, Hsieh R, Adams JD, Yaralioglu GG, Minne SC, Quate CF, Cleveland JP, Atalar A, Adderton DM (2000) High-speed tapping mode imaging with active Q control for atomic force microscopy. Appl Phys Lett 76:1473–1475CrossRefGoogle Scholar
  12. 12.
    Sulchek T, Yaralioglu GG, Quate CF, Minne SC (2002) Characterization and optimization of scan speed for tapping-mode atomic force microscopy. Rev Sci Inst 73:2928–2936CrossRefGoogle Scholar
  13. 13.
    Antognozzi M, Szczelkun MD, Humphris ADL, Miles MJ (2003) Increasing shear force microscopy scanning rate using active quality-factor control. Appl Phys Lett 82:2761–2763CrossRefGoogle Scholar
  14. 14.
    Lei FH, Nicolas J-L, Troyon M, Sockalingum GD, Rubin S, Manfait M (2003) Shear force detection by using bimorph cantilever with enhanced Q-factor. J Appl Phys 93:2236–2243CrossRefGoogle Scholar
  15. 15.
    Yamanaka K, Maruyama Y, Tsuji T, Nakamoto K (2001) Resonance frequency and Q factor mapping by ultrasonic atomic force microscopy. Appl Phys Lett 78:1939–1941CrossRefGoogle Scholar
  16. 16.
    Fukuda K, Irihama H, Tsuji T, Nakamoto K, Yamanaka K (2003) Sharperning contact resonance spectra in UAFM using Q-control. Surf Sci 532–535:1145CrossRefGoogle Scholar
  17. 17.
    Hölscher H (2002) Q-controlled dynamic force spectroscopy. Surf Sci 515:21–26CrossRefGoogle Scholar
  18. 18.
    Gao S, Chi LF, Lenert S, Anczykowski B, Niemeyer C, Adler M, Fuchs H (2001) Highquality mapping of DNA-protein complexes by dynamic scanning force microscopy. Chem Phys Chem 6:384–388Google Scholar
  19. 19.
    Humphris ADL, Round AN, Miles MJ (2001) Enhanced imaging of DNA via active quality factor control. Surf Sci 491(3):468–472CrossRefGoogle Scholar
  20. 20.
    Tamayo J, Humphris ADL, Owen RJ, Miles MJ (2001) High-Q dynamic force microscopy in liquid and its application to living cells. Biophys J 81:526–537Google Scholar
  21. 21.
    Pignataro B, Chi LF, Gao S, Anczykowski B, Niemeyer C, Adler M, Fuchs H (2002) Dynamic force microscopy study of self-assembeld dna-protein nanostructures. Appl Phys A 74:447CrossRefGoogle Scholar
  22. 22.
    Jäggi RD, Franco-Obregon A, Studerus P, Ensslin K (2001) Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode. Appl Phys Lett 79:135–137CrossRefGoogle Scholar
  23. 23.
    Rodriguez TR, Garcia R (2003) Theory of Q-control in atomic force microscopy. Appl Phys Lett 82:4821–4823CrossRefGoogle Scholar
  24. 24.
    Kokavecz J, Horváth ZL, Melcher A (2004) Dynamical properties of the Q-controlled atomic force microscope. Appl Phys Lett 85:3232–3234CrossRefGoogle Scholar
  25. 25.
    Tamayo J (2005) Study of the noise of micromechanical oscillators under quality factor enhancement via driving force control. J Appl Phys 97:044903CrossRefGoogle Scholar
  26. 26.
    Hölscher H, Ebeling D, Schwarz UD (2006) Theory of Q-controlled dynamic force microscopy in air. J Appl Phys 99:084311CrossRefGoogle Scholar
  27. 27.
    Press WH, Tekolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in C. Cambridge University PressGoogle Scholar
  28. 28.
    Dürig U (2000) Interaction sensing in dynamic force microscopy. N J of Phys 2:5.1–5.12Google Scholar
  29. 29.
    Hölscher H, Gotsmann B, Allers W, Schwarz UD, Fuchs H, Wiesendanger R (2001) Measurement of conservative and dissipative tip-sample interaction forces with a dynamic force microscope using the frequency modulation technique. Phys Rev B 64:075402CrossRefGoogle Scholar
  30. 30.
    Sader JE, Uchihashi T, Farrell A, Higgins MJ, Nakayama Y, Jarvis SP (2005) Quantitative force measurements using frequency modulation atomic force microscopy — theoretical foundations. Nanotechnology 16:S94–S101CrossRefGoogle Scholar
  31. 31.
    Aimé JP, Boisgard R, Nony L, Couturier G (1999) Nonlinear dynamic behavior of an oscillating tip-microlever system and contrast at the atomic scale. Phys Rev Lett 82:3388–3391CrossRefGoogle Scholar
  32. 32.
    García R, San Paulo A (1999) Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy. Phys Rev B 60:4961–4967CrossRefGoogle Scholar
  33. 33.
    Lee SI, Howell SW, Raman A, Reifenberger R (2002) Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: a comparison between theory and experiment. Phys Rev B 66:115409CrossRefGoogle Scholar
  34. 34.
    Zitzler L, Herminghaus S, Mugele F (2002) Capillary forces in tapping mode atomic force microscopy. Phys Rev B 66:155436CrossRefGoogle Scholar
  35. 35.
    Stark RW, Schitter G, and Stemmer A (2003) Tuning the interaction forces in tapping mode atomic force microscopy. Phys Rev B 68:085401CrossRefGoogle Scholar
  36. 36.
    Schwarz UD (2003) A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. J Coll Interf Sci 261:99–106CrossRefGoogle Scholar
  37. 37.
    Anczykowski B, Krüger D, Fuchs H (1996) Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. Phys Rev B 53:15485–15488CrossRefGoogle Scholar
  38. 38.
    García R, San Paulo A (2000) Dynamics of a vibrating tip near or in intermittent contact with a surface. Phys Rev B 61(20):R13381–R13384CrossRefGoogle Scholar
  39. 39.
    San Paulo A, García R (2000) High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repulsive tip-sample interaction regimes. Biophys J 78:1599–1605CrossRefGoogle Scholar
  40. 40.
    San Paulo A, García R (2002) Unifying theory of tapping-mode atomic-force microscopy. Phys Rev B 66:041406CrossRefGoogle Scholar
  41. 41.
    Weisenhorn AL, Maivald P, Butt HJ, Hansma PK (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B 45:11226–11232CrossRefGoogle Scholar
  42. 42.
    Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, LondonGoogle Scholar
  43. 43.
    Ohnesorge F, Binnig G (1993) True atomic-resolution by atomic force microscopy through repulsive and attractive forces. Science 260:1451–1456CrossRefGoogle Scholar
  44. 44.
    Engel A, Müller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nature Struct Biol 7:715–718CrossRefGoogle Scholar
  45. 45.
    Bielefeldt H, Giessibl FJ (1999) A simplified but intuitive analytical model for intermittent-contact-mode force microscopy based on hertzian mechanics. Surf Sci Lett 440:L863–L867CrossRefGoogle Scholar
  46. 46.
    Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673CrossRefGoogle Scholar
  47. 47.
    Schirmeisen A, Anczykowski B, Fuchs H (2004) Dynamic force microscopy. In Bhushan B, Fuchs H, and Hosaka S, editors, Applied Scanning Probe Methods, pages 3–39, SpringerGoogle Scholar
  48. 48.
    Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48CrossRefGoogle Scholar
  49. 49.
    Hartig M, Chi LF, Liu XD, Fuchs H (1998) Dependence of the measured monolayer height on applied forces in scanning force microscopy. Thin Solid Films 327–329:262–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.Center for NanoTechnology (CeNTech)Münster
  2. 2.Department of Mechanical EngineeringYale UniversityNew HavenUSA

Personalised recommendations