Skip to main content

Low-Noise Methods for Optical Measurements of Cantilever Deflections

  • Chapter
Applied Scanning Probe Methods V

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  2. Sarid D, Iams D, Weissenberger V, Bell LS (1988) Compact scanning-force microscope using a laser diode. Opt Lett 13:1057–1059

    Google Scholar 

  3. Neubauer G, Cohen SR, McClelland GM, Horne D, Mate CM (1990) Force microscopy with a bidirectional capacitance sensor. Rev Sci Instrum 61:2296–2308

    Article  CAS  Google Scholar 

  4. Tortonese M, Yamada H, Barret RC, Quate CF (1991) The proceedings of Transducers 1991. IEEE, Pennington, pp 448–451

    Google Scholar 

  5. Minne SC, Manalis SR, Quate CF (1995) Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators. Appl Phys Lett 67:3918–3920

    Article  CAS  Google Scholar 

  6. Rugar D, Mamin HJ, Erlandsson R, Stern JE, Terris BD (1988) Force microscope using a fiber-optic displacement sensor. Rev Sci Instrum 59:2337–2340

    Article  CAS  Google Scholar 

  7. Rugar D, Mamin HJ, Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy. Appl Phys Lett 55:2588–2590

    Article  CAS  Google Scholar 

  8. Schönenberger C, Alvarado SF (1989) A differential interferometer for force microscopy. Rev Sci Instrum 60:3131–3134

    Article  Google Scholar 

  9. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045–1047

    Article  Google Scholar 

  10. Alexander S, Hellemans L, Marti O, Schneir J, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical lever. J Appl Phys 65:164–167

    Article  CAS  Google Scholar 

  11. Putman CAJ, De Grooth BG, Van Hulst NF, Greve J (1992) A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J Appl Phys 72:6–12

    Article  Google Scholar 

  12. Gustafsson MGL, Clarke J (1994) Scanning force microscope springs optimized for optical-beam deflection and with tips made by controlled fracture. J Appl Phys 76:172–181

    Article  Google Scholar 

  13. Drake B, Prater CB, Weisenhorn AL, Gould SA, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589

    Article  CAS  Google Scholar 

  14. Albrecht TR, Akamine S, Carver TE, Quate CF (1990) Microfabrication of cantilever styli for the atomic force microscope. J Vac Sci Technol A 8:3386–3396

    Article  CAS  Google Scholar 

  15. Wolter O, Bayer T, Greschner J (1991) Micromachined silicon sensors for scanning force microscopy. J Vac Sci Technol B 9:1353–1357

    Article  CAS  Google Scholar 

  16. Pechmann R, Kohler JM, Fritzsche W, Schaper A, Jovin TM (1994) The Novolever — a new cantilever for scanning force microscopy microfabricated from polymeric materials. Rev Sci Instrum 65:3702–3706

    Article  CAS  Google Scholar 

  17. Walters DA, Cleveland JP, Thomson NH, Hansma PK, Wendman MA, Gurley G, Elings V (1996) Short cantilevers for atomic force microscopy. Rev Sci Instrum 67:3583–3590

    Article  CAS  Google Scholar 

  18. Schäffer TE, Viani M, Walters DA, Drake B, Runge EK, Cleveland JP, Wendman MA, Hansma PK (1997) An atomic force microscope for small cantilevers. Proc SPIE 3009: 48–52

    Google Scholar 

  19. Kulisch W, Malave A, Lippold G, Scholz W, Mihalcea C, Oesterschulze E (1997) Fabrication of integrated diamond cantilevers with tips for SPM applications. Diamond Relat Mater 6:906–911

    Article  CAS  Google Scholar 

  20. Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, Meyer E, Güntherodt HJ (1997) Surface stress in the self-assembly of alkanethiols on gold. Science 276:2021–2024

    Article  CAS  Google Scholar 

  21. Chand A, Viani MB, Schaffer TE, Hansma PK (2000) Microfabricated small metal cantilevers with silicon tip for atomic force microscopy. J Microelectromech Syst 9:112–116

    Article  CAS  Google Scholar 

  22. Despont M, Brugger J, Drechsler U, Durig U, Haberle W, Lutwyche M, Rothuizen H, Stutz R, Widmer R, Binnig G, Rohrer H, Vettiger P (2000) VLSI-NEMS chip for parallel AFM data storage. Sens Actuators A 80:100–107

    Article  Google Scholar 

  23. Oesterschulze E, Abelmann L, Bos Avd, Kassing R, Lawrence N, Wittstock G, Ziegler C (2006) In: Bushan B, Fuchs H (eds) Applied scanning probe methods, vol II. Springer, Berlin Heidelberg New York, pp 165–203

    Chapter  Google Scholar 

  24. Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Forces in atomic force microscopy in air and water. Appl Phys Lett 54:2651–2653

    Article  Google Scholar 

  25. Rugar D, Stipe BC, Mamin HJ, Yannoni CS, Stowe TD, Yasumura KY, Kenny TW (2001) Adventures in attonewton force detection. Appl Phys A 72:S3–S10

    Google Scholar 

  26. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: Technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  27. Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63:1165–1169

    CAS  Google Scholar 

  28. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using and atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  29. Butt H-J (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys J 60:1438–1444

    CAS  Google Scholar 

  30. Rief M, Grubmüller H (2002) Force spectroscopy of single biomolecules. Chem Phys Chem 3:255–261

    CAS  Google Scholar 

  31. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science 264:415–417

    Article  CAS  Google Scholar 

  32. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci USA 93:3477–3481

    Article  CAS  Google Scholar 

  33. Dammer U, Hegner M, Anselmetti D, Wagner P, Dreier M, Huber W, Güntherodt HJ (1996) Specific antigen/antibody interactions measured by force microscopy. Biophys J 70:2437–2441

    Article  CAS  Google Scholar 

  34. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science 266:771–773

    Article  CAS  Google Scholar 

  35. Rief M, Oesterhelt F, Heymann B, Gaub HE (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275:1295–1297

    Article  CAS  Google Scholar 

  36. Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    Article  CAS  Google Scholar 

  37. Gittes F, Schmidt CF (1998) Thermal noise limitations on micromechanical experiments. Eur Biophys J 27:75–81

    Article  CAS  Google Scholar 

  38. Viani MB, Schaffer TE, Chand A, Rief M, Gaub HE, Hansma PK (1999) Small cantilevers for force spectroscopy of single molecules. J Appl Phys 86:2258–2262

    Article  CAS  Google Scholar 

  39. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1873

    Article  CAS  Google Scholar 

  40. Cleveland JP, Schäffer TE, Hansma PK (1995) Probing oscillatory hydration potentials using thermal-mechanical noise in an atomic-force microscope. Phys Rev B 52:R8692–8695

    Article  CAS  Google Scholar 

  41. Roters A, Gelbert M, Schimmel M, Ruhe J, Johannsmann D (1997) Static and dynamic pro-files of tethered polymer layers probed by analyzing the noise of an atomic force microscope. Phys Rev E 56:3256–3264

    Article  CAS  Google Scholar 

  42. Heinz WF, Antonik MD, Hoh JH (2000) Reconstructing local interaction potentials from perturbations to the thermally driven motion of an atomic force microscope cantilever. J Phys Chem B 104:622–626

    Article  CAS  Google Scholar 

  43. Benmouna F, Johannsmann D (2004) Viscoelasticity of gelatin surfaces probed by AFM noise analysis. Langmuir 20:188–193

    Article  CAS  Google Scholar 

  44. Born M, Wolf E (1980) Principles of optics. Pergamon, Oxford

    Google Scholar 

  45. Goodman JW (1968) Introduction to Fourier optics. McGraw-Hill, San Francisco

    Google Scholar 

  46. Schäffer TE, Hansma PK (1998) Characterization and optimization of the detection sensitivity of an atomic force microscope for small cantilevers. J Appl Phys 84:4661–4666

    Article  Google Scholar 

  47. Schäffer TE (2002) Force spectroscopy with a large dynamic range using small cantilevers and an array detector. J Appl Phys 91:4739–4746

    Article  CAS  Google Scholar 

  48. Schäffer TE, Fuchs H (2005) Optimized detection of normal vibration modes of atomic force microscope cantilevers with the optical beam deflection method. J Appl Phys 97:083524

    Article  CAS  Google Scholar 

  49. Sarid D (1994) Scanning force microscopy: with applications to electric, magnetic, and atomic forces. Oxford University Press, New York

    Google Scholar 

  50. Martin Y, Wickramasinge HK(1987) Magnetic imaging by “force microscopy” with 1000Å resolution. Appl Phys Lett 50:1455–1457

    Article  Google Scholar 

  51. Albrecht TR, Grütter P, Horne D, Rugar D (1991) Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673

    Article  Google Scholar 

  52. Giessibl FJ (1995) Atomic resolution of the silicon (111)-(7 × 7) surface by atomic force microscopy. Science 267:68–71

    Article  CAS  Google Scholar 

  53. Sugawara Y, Ohta M, Ueyama H, Morita S (1995) Defect motion on an InP(110) surface observed with noncontact atomic force microscopy. Science 270:1646–1648

    Article  CAS  Google Scholar 

  54. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci 290:L688–692

    Article  CAS  Google Scholar 

  55. Hansma PK, Cleveland JP, Radmacher M, Walters DA, Hillner PE, Bezanilla M, Fritz M, Vie D, Hansma HG, Prater CB, Massie J, Fukunaga L, Gurley J, Elings V (1994) Tapping mode atomic force microscopy in liquids. Appl Phys Lett 64:1738–1740

    Article  CAS  Google Scholar 

  56. Putman CAJ, Werf KOV, Grooth BGD, Hulst NFV, Greve J (1994) Tapping mode atomic force microscopy in liquid. Appl Phys Lett 64:2454–2456

    Article  CAS  Google Scholar 

  57. Lantz MA, O’Shea SJ, Welland ME (1994) Force microscopy imaging in liquids using ac techniques. Appl Phys Lett 65:409–411

    Article  CAS  Google Scholar 

  58. Walls D (1983) Squeezed states of light. Nature 306:141

    Article  Google Scholar 

  59. Pierce M, Stuart J, Pungor A, Dryden P, Hlady V (1994) Adhesion force measurements using an atomic force microscope upgraded with a linear position sensitive detector. Langmuir 10:3217–3221

    Article  CAS  Google Scholar 

  60. Schäffer TE, Richter M, Viani MB (2000) Array detector for the atomic force microscope. Appl Phys Lett 76:3644–3646

    Article  Google Scholar 

  61. Schäffer TE, Hansma PK (2002) High sensitivity deflection sensing device. US Patent 6,455,838

    Google Scholar 

  62. Anczykowski B, Krüger D, Fuchs H (1996) Cantilever dynamics in quasinoncontact force microscopy’ spectroscopic aspects. Phys Rev B 53:15485

    Article  CAS  Google Scholar 

  63. Liu YZ, Leuba SH, Lindsay SM (1999) Relationship between stiffness and force in single molecule pulling experiments. Langmuir 15:8547–8548

    Article  CAS  Google Scholar 

  64. Dürig U (1999) Relations between interaction forces and frequency shift in large-amplitude dynamic force microscopy. Appl Phys Lett 75:433–435

    Article  Google Scholar 

  65. Minne SC, Manalis SR, Atalar A, Quate CF (1996) Contact imaging in the atomic force microscope using a higher order flexural mode combined with a new sensor. Appl Phys Lett 68:1427–1429

    Article  CAS  Google Scholar 

  66. Stark RW, Drobek T, Heckl WM (1999) Tapping-mode atomic force microscopy and phase-imaging in higher eigenmodes. Appl Phys Lett 74:3296–3298

    Article  CAS  Google Scholar 

  67. Hillenbrand R, Stark M, Guckenberger R (2000) Higher-harmonics generation in tapping-mode atomic-force microscopy: Insights into the tip-sample interaction. Appl Phys Lett 76:3478–3480

    Article  CAS  Google Scholar 

  68. Rabe U, Arnold W (1994) Acoustic microscopy by atomic force microscopy. Appl Phys Lett 64:1493

    Article  Google Scholar 

  69. Yamanaka K, Ogiso H, Kolosov O (1994) Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl Phys Lett 64:178

    Article  CAS  Google Scholar 

  70. Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev Sci Instrum 67:3281–3293

    Article  CAS  Google Scholar 

  71. Rabe U, Turner J, Arnold W (1998) Analysis of the high-frequency response of atomic force microscope cantilevers. Appl Phys A 66:S277–S282

    Article  CAS  Google Scholar 

  72. Stark RW, Heckl WM (2000) Fourier-transformed force microscopy: tapping-mode atomic force microscopy beyond the Hookian approximation. Surf Sci 457:219–228

    Article  CAS  Google Scholar 

  73. Stark M, Stark RW, Heckl WM, Guckenberger R (2002) Inverting dynamic force microscopy: from signals to time-resolved interaction forces. Proc Natl Acad Sci USA 99:8473–8478

    Article  CAS  Google Scholar 

  74. Rodríguez TR, García R (2004) Compositional mapping of surfaces in atomic force microscopy. Appl Phys Lett 84:449–451

    Article  CAS  Google Scholar 

  75. Schäffer TE, Cleveland JP, Ohnesorge F, Walters DA, Hansma PK (1996) Studies of vibrating atomic force microscope cantilevers in liquid. J Appl Phys 80:3622–3627

    Article  Google Scholar 

  76. Stark RW (2004) Optical lever detection in higher eigenmode dynamic atomic force microscopy. Rev Sci Instrum 75:5053–5055

    Article  CAS  Google Scholar 

  77. Schäffer TE (2005) Calculation of thermal noise in an atomic force microscope with a finite optical spot size. Nanotechnology 16:664–670

    Article  Google Scholar 

  78. Timoshenko S, Young DH, Weaver W (1974) Vibration problems in engineering. Wiley, New York

    Google Scholar 

  79. Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  80. Drobek T, Stark RW, Heckl WM (2001) Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy. Phys Rev B 64:045401

    Article  CAS  Google Scholar 

  81. Rugar D, Grütter P (1991) Mechanical parametric amplification and thermomechanical noise squeezing. Phys Rev Lett 67:699–702

    Article  Google Scholar 

  82. Liang S, Medich D, Czajkowsky DM, Sheng S, Yuan J-Y, Shao Z (2000) Thermal noise reduction of mechanical oscillators by actively controlled external dissipative forces. Ultra-microscopy 84:119–125

    CAS  Google Scholar 

  83. Muralidharan G, Mehta A, Cherian S, Thundat T (2001) Analysis of amplification of thermal vibrations of a microcantilever. J Appl Phys 89:4587–4591

    Article  CAS  Google Scholar 

  84. Cleveland JP, Manne S, Bocek D, Hansma PK (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  CAS  Google Scholar 

  85. Sader JE, Larson I, Mulvaney P, White LR (1995) Method for the calibration of atomic force microscope cantilevers. Rev Sci Instrum 66:3789–3798

    Article  CAS  Google Scholar 

  86. Sader JE (1995) Parallel beam approximation for V-shaped atomic force microscope cantilevers. Rev Sci Instrum 66:4583–4587

    Article  CAS  Google Scholar 

  87. Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70:3967–3969

    Article  CAS  Google Scholar 

  88. Sader JE (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J Appl Phys 84:64–76

    Article  CAS  Google Scholar 

  89. Sader JE (2002) In: Hubbard A (ed) Encyclopedia of surface and colloidal science. Dekker, New York, pp 846–856

    Google Scholar 

  90. D’Costa NP, Hoh JH (1995) Calibration of optical lever sensitivity for atomic force microscopy. Rev Sci Instrum 66:5096–5097

    Article  CAS  Google Scholar 

  91. Proksch R, Schäffer TE, Cleveland JP, Callahan RC, Viani MB (2004) Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology 15:1344–1350

    Article  Google Scholar 

  92. Cook SM, Schäffer TE, Chynoweth KM, Wigton M, Simmonds RW, Lang KM (2006) Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17:2135–2145

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schäffer, T.E. (2007). Low-Noise Methods for Optical Measurements of Cantilever Deflections. In: Bhushan, B., Kawata, S., Fuchs, H. (eds) Applied Scanning Probe Methods V. NanoScience and Technology. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37316-2_3

Download citation

Publish with us

Policies and ethics