Advertisement

Near-Field Raman Spectroscopy and Imaging

Chapter
  • 1.2k Downloads
Part of the NanoScience and Technology book series (NANO)

10.5 Conclusions

In the last decades scanning near-field optical techniques have been the basis for nanometer scale resolution spectroscopy and imaging. Single-molecule detection and identification, on the other hand, is a matter of ongoing active research. Raman spectroscopy can provide unambiguous molecular identification due to the welldefined vibrational energy peaks. However, in order to develop all its potential in nanotechnologies, a spatial resolution beyond the ∼ 200 to 300 nm imposed by the diffraction limit is needed. Combination of Raman spectroscopy with aperture-SNOM is mainly limited by the low light outputs imposed by the fiber optic probes. More recently, the development of SERS and TERS has supplied a huge amplification of Raman scattering due to both the enhanced excitation fields and the exploitation of metal-induced resonant electronic levels. Although the physical and chemical mechanisms underlying these phenomena are not yet fully understood, single-molecule sensitivity and sub-20 nm spatial resolution Raman imaging have been demonstrated.

Keywords

Raman Spectrum Raman Spectroscopy Raman Signal Polarizability Tensor Quartz Tuning Fork 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raman CV, Krishnan KS (1928) Nature 121:501Google Scholar
  2. 2.
    Raman CV (1928) Nature 121:619Google Scholar
  3. 3.
    Porto SPS, Wood DL (1962) J Opt Soc Am 52:251Google Scholar
  4. 4.
    Bachelier G, Mlayah A, Cazayous M, Groenen J, Zwick A, Carrere H, Bedel-Pereira E, Arnoult A, Rocher A, Ponchet A (2003) Phys Rev E 67:205325Google Scholar
  5. 5.
    Maisano G, Majolino D, Mallamace F, Migliardo P, Vasi C, Vanderlingh F, Aliotta F (1986) Mol Phys 57:1083Google Scholar
  6. 6.
    Pohl DW, Denk W, Lanz M (1984) Appl Phys Lett 44:651Google Scholar
  7. 7.
    Lewis A, Isaacson M, Harootunian A, Murray A (1984) Ultramicroscopy 13:227Google Scholar
  8. 8.
    Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Science 251:1468Google Scholar
  9. 9.
    Girard C, Dereux A (1996) Rep Progr Phys 59:657Google Scholar
  10. 10.
    Long DA (2002) The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules. Wiley, New YorkGoogle Scholar
  11. 11.
    Maker PD, Terhune RW (1965) Phys Rev 137:A801Google Scholar
  12. 12.
    Shen YR (1984) The Principles of Non-Linear Optics. Wiley, New YorkGoogle Scholar
  13. 13.
    Duncan MD, Reintjes J, Manuccia TJ (1982) Opt Lett 7:350Google Scholar
  14. 14.
    Trusso S, Vasi C, Allegrini M, Fuso F, Pennelli G (1999) J Vac Sci Technol B 17:468Google Scholar
  15. 15.
    Monsu Scolaro L, Romeo A, Castriciano MA, Micali N (2005) Chem Comm 3018Google Scholar
  16. 16.
    Micali N, Villari V, Monsu Scolaro L, Romeo A, Catriciano MA (2005) Phys Rev E 72:050401(R)Google Scholar
  17. 17.
    Stanley HE, Ostrowsky N (1986) On Growth and Form. NATO ASI Series. Nijhoff, DordrechtGoogle Scholar
  18. 18.
    Neri F, Trusso S, Vasi C, Barreca F, Valisa P (1998) Thin Solid Films 332:290Google Scholar
  19. 19.
    Abbe E (1873) Arch Mikroskop Anat 9:413Google Scholar
  20. 20.
    Synge EH (1928) Phil Mag 6:356Google Scholar
  21. 21.
    Newton I (1952) Optiks. Dover, New York, based on 4th (1730) editionGoogle Scholar
  22. 22.
    Courjon D (2003) Near-Field Microscopy and Near-Field Optics. Imperial College Press, LondonGoogle Scholar
  23. 23.
    Paesler MA, Moyer PJ (1996) Near-Field Optics: Theory, Instrumentation and Applications. Wiley, New YorkGoogle Scholar
  24. 24.
    Allegrini M, Ascoli C, Gozzini A (1971) Opt Commun 2:435Google Scholar
  25. 25.
    Van Labeke D, Barchiesi D, Baida F (1995) J Opt Soc Am 12:695Google Scholar
  26. 26.
    Latini G, Downes A, Fenwick O, Ambrosio A, Allegrini M, Daniel C, Silva C, Gucciardi PG, Patanè S, Daik R, Feast WJ, Cacialli F (2005) Appl Phys Lett 86:011102Google Scholar
  27. 27.
    Gucciardi PG, Patanè S, Ambrosio A, Allegrini M, Downes AD, Latini G, Fenwick O, Cacialli F (2005) Appl Phys Lett 86:203109Google Scholar
  28. 28.
    Erickson ES, Dunn RC (2005) Appl Phys Lett 87:201102Google Scholar
  29. 29.
    Ayars EJ, Hallen HD, Jahncke CL (2000) Phys Rev Lett 85:4180Google Scholar
  30. 30.
    Toledo-Crow R, Yang PC, Chen Y, Vaez-Iravani M (1992) Appl Phys Lett 60:2957Google Scholar
  31. 31.
    Betzig E, Finn PL, Weiner JS (1992) Appl Phys Lett 60:2484Google Scholar
  32. 32.
    Karrai K, Grober RD (1995) Appl Phys Lett 66:1842Google Scholar
  33. 33.
    Hecht B, Sick B, Wild UP, Deckert V, Zenobi R, Martin OJF, Pohl DW (2000) J Chem Phys 112:7761Google Scholar
  34. 34.
    Suh YD, Zenobi R (2000) Adv Mater 12:1139Google Scholar
  35. 35.
    Sayah A, Philipona C, Lambelet P, Pfeffer M, Marquis-Weible F (1998) Ultramicroscopy 71:59Google Scholar
  36. 36.
    Zeisel D, Nettesheim S, Dutoit B, Zenobi R (1996) Appl Phys Lett 68:2491Google Scholar
  37. 37.
    Wolf JF, Hillner PE, Bilewicz R, Kolsch P, Rabe JP (1999) Rev Sci Instrum 70:2751Google Scholar
  38. 38.
    Stöckle RM, Fokas C, Deckert V, Zenobi R, Sick B, Hecht B, Wild UP (1999) Appl Phys Lett 75:160Google Scholar
  39. 39.
    Patanè S, CefalÌ E, Arena A, Gucciardi PG, Allegrini M (2006) Ultramicroscopy 106:475Google Scholar
  40. 40.
    Oesterschulze E, Rudow O, Mihalcea C, Scholz W, Werner S (1998) Ultramicroscopy 71:99Google Scholar
  41. 41.
    Veerman JA, Otter AM, Kuipers L, van Hulst NF (1998) Appl Phys Lett 72:3115Google Scholar
  42. 42.
    Radojewski J, Grabiec P (2003) Materials Science 21:3Google Scholar
  43. 43.
    Biagioni P, Polli D, Labardi M, Pucci A, Ruggeri G, Cerullo G, Finazzi M, Duò L (2005) Appl Phys Lett 87:223112Google Scholar
  44. 44.
    H’Dhili F, Bachelot R, Lerondel G, Barchiesi D, Royer P (2001) Appl Phys Lett 79:10Google Scholar
  45. 45.
    Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2002) Phys Chem Chem Phys 4:2747Google Scholar
  46. 46.
    Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2003) Appl Opt 42:2724Google Scholar
  47. 47.
    Zenhausern F, O’Boyle MP, Wickramasinghe HK (1994) Appl Phys Lett 65:1623; Bachelot R, Gleyzes P, Boccara AC (1995) Opt Lett 20:1924Google Scholar
  48. 48.
    Labardi M, Patanè S, Allegrini M (2000) Appl Phys Lett 77:621Google Scholar
  49. 49.
    Hillenbrand R, Keilmann F (2000) Phys Rev Lett 85:3029Google Scholar
  50. 50.
    Novotny L, Bian RX, Xie XS (1997) Phys Rev Lett 79:645Google Scholar
  51. 51.
    Hayazawa N, Saito Y, Kawata S (2004) Appl Phys Lett 85:6239Google Scholar
  52. 52.
    Dorn R, Quabis S, Leuchs G (2003) Phys Rev Lett 91:233901Google Scholar
  53. 53.
    Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837Google Scholar
  54. 54.
    Bonera E, Fanciulli M, Mariani M (2005) Appl Phys Lett 87:111913; Piazza F, Grambole D, Zhou L, Talke F, Casiraghi C, Ferrari AC, Robertson J (2004) Diam Relat Mater 13:1505Google Scholar
  55. 55.
    Jorio A, Saito R, Dresselhaus G, Dresselhaus MS (2004) Phil Trans R Soc Lond A362:2311Google Scholar
  56. 56.
    Anastassakis E, Cantarero A, Cardona M (1990) Phys Rev B 41:7529Google Scholar
  57. 57.
    Clarke DR, Kroll MC, Kirchner PD, Cook RF, Hockey BJ (1988) Phys Rev Lett 60:2156Google Scholar
  58. 58.
    De Wolf I, Maes HE, Jones SK (1996) J Appl Phys 79:7148; De Wolf I, Anastassakis E (1999) J Appl Phys 85:7484Google Scholar
  59. 59.
    Webster S, Batchelder DN, Smith DA (1998) Appl Phys Lett 72:1478Google Scholar
  60. 60.
    Webster S, Smith DA, Batchelder DN (1998) Vib Spectrosc 18:51Google Scholar
  61. 61.
    Gucciardi PG, Trusso S, Vasi C, Patanè S, Allegrini M (2003) J Microsc Oxford 209:228Google Scholar
  62. 62.
    Gao W, Kahn A (2001) Appl Phys Lett 79:4040Google Scholar
  63. 63.
    Blochwitz J, Pfeiffer M, Fritz T, Leo K (1998) Appl Phys Lett 73:729Google Scholar
  64. 64.
    Hua ZY, Chen GR (1992) Vacuum 43:1019Google Scholar
  65. 65.
    Graja A (1997) Spectroscopy of Materials for Molecular Electronics. Scientific, PoznanGoogle Scholar
  66. 66.
    Jahncke CL, Paesler MA, Hallen HD (1995) Appl Phys Lett 67:2483Google Scholar
  67. 67.
    Jahncke CL, Hallen HD, Paesler MA (1996) J Raman Spectrosc 27:579Google Scholar
  68. 68.
    Higo M, Lu X, Mazur U, Hipps KW (2001) Thin Solid Films 384:90Google Scholar
  69. 69.
    Nie S, Emory SR (1997) Science 275:1102Google Scholar
  70. 70.
    Fleishmann J, Hendra PJ, McQuillan AJ (1974) Chem Phys Lett 26:163Google Scholar
  71. 71.
    Jeanmarie DL, Van Duyne RP (1977) J Electroanal Chem 84:1Google Scholar
  72. 72.
    Albrecht MG, Creighton JA (1977) J Am Chem Soc 99:5215Google Scholar
  73. 73.
    Moskovits M (1985) Rev Mod Phys 57:783Google Scholar
  74. 74.
    Otto A (1984) In: Light Scattering in Solids. Springer, Berlin Heidelberg New YorkGoogle Scholar
  75. 75.
    García-Vidal FJ, Pendry JB (1996) Phys Rev Lett 77:1163Google Scholar
  76. 76.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667Google Scholar
  77. 77.
    Otto A, Mrozek I, Grabhorn H, Akemann W (1992) J Phys Condens Matter 4:1143Google Scholar
  78. 78.
    Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari RR, Feld MS (1996) Phys Rev Lett 76:2444Google Scholar
  79. 79.
    Ziesel D, Dutoit B, Deckert V, Roth T, Zenobi R (1997) Anal Chem 69:749Google Scholar
  80. 80.
    Emory SR, Nie S (1997) Anal Chem 69:2631Google Scholar
  81. 81.
    Deckert V, Zeisel D, Zenobi R, Vo-Dinh T (1998) Anal Chem 70:2646Google Scholar
  82. 82.
    Hillenbrand R, Keilmann F, Hanarp P, Sutherland DS, Aizpurua J (2003) Appl Phys Lett 83:368Google Scholar
  83. 83.
    Wang JJ, Saito Y, Batchelder DN, Kirkham J, Robinson C, Smith DA (2005) Appl Phys Lett 86:263111Google Scholar
  84. 84.
    Stöckle C, Suh YS, Deckert V, Zenobi R (2000) Chem Phys Lett 318:131Google Scholar
  85. 85.
    Melmed AJ (1991) J Vac Sci Technol B9:601Google Scholar
  86. 86.
    Ren B, Picardi G, Pettinger B (2004) Rev Sci Instrum 75:837Google Scholar
  87. 87.
    Billot L, Berguiga L, de la Chapelle ML, Gilbert Y, Bachelot R (2005) Eur Phys J Appl Phys 31:139Google Scholar
  88. 88.
    Plake T, Ramsteiner M, Grahn HT (2002) Rev Sci Instrum 73:4250Google Scholar
  89. 89.
    Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2000) Opt Commun 183:2000; Hayazawa N, Inouye Y, Sekkat Z, Kawata S (2001) Chem Phys Lett 335: 369Google Scholar
  90. 90.
    Hillenbrand R, Taubner T, Keilmann F (2002) Nature 418:159Google Scholar
  91. 91.
    Knoll B, Keilmann F (2000) Opt Commun 182:321Google Scholar
  92. 92.
    Neacsu CC, Steudle GA, Raschko MB (2005) Appl Phys B 80:295Google Scholar
  93. 93.
    Ashino M, Ohtsu M (1998) Appl Phys Lett 72:1299Google Scholar
  94. 94.
    Hayazawa N, Saito Y, Kawata S (2005) Appl Phys Lett 85:6239Google Scholar
  95. 95.
    Kerker M, Wang DS, Chew H (1980) Appl Opt 19:3373CrossRefGoogle Scholar
  96. 96.
    Jersch J, Demming F, Hildenhagen LJ, Dickmann K (1998) Appl Phys A 66:29Google Scholar
  97. 97.
    Demming AL, Festy F, Richards D (2005) J Chem Phys 122:184716Google Scholar
  98. 98.
    Hartschuh A, Sanchez EJ, Xie S, Novotny L (2003) Phys Rev Lett 90:095503Google Scholar
  99. 99.
    Patanè S, Gucciardi PG, Labardi M, Allegrini M (2004) La Rivista del Nuovo Cimento 27:1Google Scholar
  100. 100.
    Pettinger B, Ren B, Picardi G, Schuster R, Ertl G (2004) Phys Rev Lett 92:096101Google Scholar
  101. 101.
    Iijima S (1991) Nature 354:56Google Scholar
  102. 102.
    Anderson N, Hartschuh A, Cronin S, Novotny L (2005) J Am Chem Soc 127:2533Google Scholar
  103. 103.
    Venema LC, Wildoer JWG, Janssen JW, Tans SJ, Tuinstra HLJT, Kouwenhoven LP, Dekker C (1999) Science 283:52Google Scholar
  104. 104.
    Jorio A, Saito R, Hafner JH, Lieber CM, Hunter M, McClure T, Dresselhaus G, Dresselhaus MS (2001) Phys Rev Lett 86:1118Google Scholar
  105. 105.
    Hayazawa N, Yano T, Watanabe H, Inouye Y, Kawata S (2003) Chem Phys Lett 376:174Google Scholar
  106. 106.
    Hartschuh A, Anderson N, Novotny L (2005) J Microscopy 210:234Google Scholar
  107. 107.
    Hartschuh A, Anderson N, Novotny L (2004) Int J Nanosc 3:371Google Scholar
  108. 108.
    Pimenta MA, Marucci A, Empedocles SA, Bawendi MG, Hanlon EB, Rao AM, Eklund PC, Smalley RE, Dresselhaus G, Dresselhaus MS (1998) Phys Rev B 58:16016Google Scholar
  109. 109.
    Gerton JM, Wade LA, Lessard GA, Ma Z, Quake SR (2004) Phys Rev Lett 93:180801Google Scholar
  110. 110.
    Knoll B, Keilmann F (1999) Nature 399:134Google Scholar
  111. 111.
    Sanchez E, Novotny L, Xie XS (1999) Phys Rev Lett 82:4014Google Scholar
  112. 112.
    Bouhelier A, Beversluis M, Hartschuh A, Novotny L (2003) Phys Rev Lett 90:013903Google Scholar
  113. 113.
    Neacsu CC, Reider GA, Raschke MB (2005) Phys Rev B 71:201402Google Scholar
  114. 114.
    Labardi M, Allegrini M, Zavelani-Rossi M, Polli D, Cerullo G, De Silvestri S, Svelto O (2004) Opt Lett 29:62Google Scholar
  115. 115.
    Gucciardi PG, Princi P, Pisani A, Favaloro A, Cutroneo G (2005) J Kor Phys Soc 47:S86Google Scholar
  116. 116.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Appl Phys Lett 84:1768Google Scholar
  117. 117.
    Ichimura T, Hayazawa N, Hashimoto M, Inouye Y, Kawata S (2004) Phys Rev Lett 92:220801Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  1. 1.CNR-Istituto per i Processi Chimico-FisiciSezione di MessinaMessinaItaly
  2. 2.Dipartimento di Fisica della Materia e Tecnologie Fisiche AvanzateUniversità di MessinaMessinaItaly
  3. 3.Dipartimento di Fisica “Enrico Fermi”Università di PisaPisaItaly

Personalised recommendations