Advertisement

A Fuzzy Kohonen’s Competitive Learning Algorithm for 3D MRI Image Segmentation

  • Jun Kong
  • Jianzhong Wang
  • Yinghua Lu
  • Jingdan Zhang
  • Jingbo Zhang
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 345)

Abstract

Kohonen’s self-organizing feature map (SOFM) is a two-layer feed-forward competitive learning network, and has been used as a competitive learning clustering algorithm in brain MRI image segmentation. However, most brain MRI images always present overlapping gray-scale intensities for different tissues. In this paper, fuzzy methods are integrated with Kohonen’s competitive algorithm to overcome this problem (we will name the algorithm F_KCL). The F_KCL algorithm fuses the competitive learning with fuzzy c-means (FCM) cluster characteristic and can improve the segment result effectively. Moreover, in order to enhancing the robustness to noise and outliers, a kernel induced method is exploited in our study to measure the distance between the input vector and the weights (KF_KCL). The efficacy of our approach is validated by extensive experiments using both simulated and real MRI images.

Keywords

Segmentation Result Radial Basis Function Kernel Fuzzy Method Neuron Excitation Segment Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pham, D.L, Xu, C. Y, Prince, J. L: A Survey of Current Methods in Medical image Segmentation. [Technical report version, JHU/ECE 99-01, Johns Hopkins University], Ann. Rev. Biomed. Eng. 2 (2000) 315–37zbMATHCrossRefGoogle Scholar
  2. 2.
    Wells, W. M., Grimson, W. E. L., Kikinis, R., Arrdrige, S. R.: Adaptive Segmentation of MRI Data. IEEE Trans Med Imaging 15 (1996) 429–42CrossRefGoogle Scholar
  3. 3.
    Gerig, G, Martin, J., Kikinis, R, Kubler, D, Shenton, M., Jolesz, F. A: Unsupervised Tissue Type Segmentation of 3D Dual-echo MR Head Data. Image Vision Compute, 10 (1992) 349–60CrossRefGoogle Scholar
  4. 4.
    Alan, W. C. L., Yan, H.: An Adaptive Spatial Fuzzy Clustering Algorithm for 3-D MR Image Segmentation. IEEE Transaction on Medical Imaging 22(9) (2003) 1063–1075CrossRefGoogle Scholar
  5. 5.
    Philips, W. E., Velthuizen, R. P., Phuphanich, S, Hall, L. O, Clarke, L. P, Silbiger, M. L: Application of Fuzzy C-means Segmentation Technique for Differentiation in MR Images of a Hemorrhagic Glioblastoma Multiforme. Mag Reson Imaging 13 (1995) 277–90CrossRefGoogle Scholar
  6. 6.
    Pham, D. L, Prince, J. L.: Adaptive Fuzzy Segmentation of Magnetic Resonance Images. IEEE Trans Med Imaging 18 (1999) 737–752CrossRefGoogle Scholar
  7. 7.
    Bezdek, J: Pattern Recognition with Fuzzy Objective Function Algorithms. New York: Plenum Press (1981)zbMATHGoogle Scholar
  8. 8.
    Wu, K. L., Yang, M. S.: Alternative C-means Clustering Algorithms. Pattern Recognition 35 (2002) 2267–2278zbMATHCrossRefGoogle Scholar
  9. 9.
    Hall, L. O, Bensaid, A.M, Clarke L. P, Velthuizen, R. P, Silbiger, M. S, Bezdek, J. C: A Comparison of Neural Network and Fuzzy Clustering Techniques in Segmenting Magnetic Resonance Images of the Brain. IEEE Trans Neural Networks, 3 (1992) 672–682CrossRefGoogle Scholar
  10. 10.
    Ozkan, M, Dawant, B. M, Maciunas, R. J: Neural-network-based Segmentation of Multimodal Medical Images: A Comparative and Prospective Study. IEEE Trans Medical Imaging, 12 (1993) 534–544CrossRefGoogle Scholar
  11. 11.
    Reddick, W. E, Glass, J. O, Cook, E. N, Elkin, T. D, Deaton, R: Automated Segmentation and Classi-fication of Multispectral Magnetic Resonance Images of Brain using Artificial Neural Networks. IEEE Trans Med Imaging, 16 (1997) 911–918CrossRefGoogle Scholar
  12. 12.
    Reddick, W. E, Mulhern, R. K, Elkin, T. D, Glass, J. O, Merchant, T. E, Langston, J. W: A Hybrid Neural Network Analysis of Subtle Brain Volume Differences in Children Surviving Brain Tumors. Mag Reson Imaging, 16 (1998) 413–421CrossRefGoogle Scholar
  13. 13.
    Chuang, K. H, Chiu, M. J, Lin, C. C, Chen, J. H: Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy c-means. IEEE Trans Medical Imaging, 18 (1999) 1117–1128CrossRefGoogle Scholar
  14. 14.
    Glass, J. O, Reddick, W. E, Goloubeva, O., Yo, V., Steen, R. G: Hybrid Artificial Neural NetWork Segmentation of Precise and Accurate Inversion Recovery (PAIR) Images From Normal Human Brain. Mag Reson Imaging 18 (2000) 1245–1253CrossRefGoogle Scholar
  15. 15.
    Kohonen, T.: Self-Organizing Maps. New York: Springer-Verlag (1995)Google Scholar
  16. 16.
    Kwan, R. S., Evans, A., Pike, G: MRI Simulation-based Evaluation of Image-processing and Classification Methods. IEEE Trans. Med. Imaging 18(11) (1999) 1085–1097. Available: http://www.bic.mni.mcgill.ca/brainwebCrossRefGoogle Scholar
  17. 17.
    Kennedy, D. N, Filipek, P. A, Caviness, V. S: Anatomic Segmentation and Volumetric Calculations in Nuclear Magnetic Resonance Imaging. IEEE Transactions on Medical Imaging, 8 (1989) 1–7. Available: http://www.cma.mgh.harvard.edu/ibsr/CrossRefGoogle Scholar
  18. 18.
    Zijdenbos, A., Dawant, B.: Brain Segmentation and White Matter Lesion Detection in MR Images. Crit. Rev. Biomed. Eng. 22(5–6) (1994) 401–465Google Scholar
  19. 19.
    Karen, C. R. Lin, M. S., Yang, H. C., Liu, J.F., Lirng, Wang, P. N.: Generalized Kohonen’s Competitive Learning Algorithm for Ophthalmological MR Image Segmentation. Magnetic Resonance Imaging 21 (2003) 863–870CrossRefGoogle Scholar
  20. 20.
    Chen, S. G., Zhang, D. Q.: Robust Image Segmentation using FCM with Spatial Constraints Based on New Kernel Induced Distance Measure. IEEE Transaction on SMC-Part B 34 (2004) 1907–1916Google Scholar
  21. 21.
    Zhang, D. Q., Chen, S. C.: A Novel Kernelized Fuzzy C-means Algorithm with Application in Medical Image Segmentation. Artificial Intelligence in Medicine 32 (2004) 37–50zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jun Kong
    • 1
    • 2
  • Jianzhong Wang
    • 1
    • 2
  • Yinghua Lu
    • 1
  • Jingdan Zhang
    • 1
  • Jingbo Zhang
    • 1
  1. 1.Computer SchoolNortheast Normal UniversityChangchun, Jilin ProvinceChina
  2. 2.Key Laboratory for Applied Statistics of MOEChina

Personalised recommendations