Advertisement

Computation of the Probability on the Number of Solution for the P3P Problem

  • Jianliang Tang
  • Xiao-Shan Gao
  • Wensheng Chen
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 345)

Abstract

The perspective-n-point (PnP) problem is to find the position and orientation of a camera with respect to a scene object from n correspondence points and is a widely used technique for pose determination in the computer vision community. This paper studies the multi-solution phenomenon for the perspective 3-point (P3P) problem. For the P3P problem, we give: 1) an algorithm to compute the number of solutions based on a Monte-Carlo type method; 2) the probabilities for the P3P problem to have zero, one, two, three and four solutions using the algorithm.

Keywords

IEEE Transaction Control Point Equation System Machine Intelligence Camera Calibration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abidi, M. A., Chandra, T.: A New Efficient and Direct Solution for Pose Estimation Using Quadrangular Targets:Algorithm and Evaluation. IEEE Transaction on Pattern Analysis and Machine Intelligence 17(5) (1995) 534–538CrossRefGoogle Scholar
  2. 2.
    Ansar, A. and Daniilidis, K.: Linear Pose Estimation from Points and Lines. IEEE Transaction on Pattern Analysis and Machine Intelligence 25(5) (2003) 578–589CrossRefGoogle Scholar
  3. 3.
    DeMenthon, D. and Davis, L. S.: Exact and Approximate Solutions of the Perspective-Three-Point Problem. IEEE Transaction on Pattern Analysis and Machine Intelligence 14(11) (1992) 1100–1105CrossRefGoogle Scholar
  4. 4.
    DeMenthon, D. F. and Davis, L. S.: Model-Based Object Pose in 25 Lines of Code. International Journal of Computer Vision 15 (1995) 123–141CrossRefGoogle Scholar
  5. 5.
    Fischler, M. A., Bolles, R. C.: Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartomated Cartography. Communications of the ACM 24(6) (1981) 381–395MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ganapathy, S.: Decomposition of Transformtion Matrices for Robot Vision. Proc. IEEE Con. Robotics and Automation IEEE Press (1984) 130–139Google Scholar
  7. 7.
    Gao, X. S., Hou, X. R., Tang, J. L. and Cheng, H.: Complete Solution Classification for the Perspective-Three-Point Problem. IEEE Transaction on Pattern Analysis and Machine Intelligence 25(8) (2003) 534–538Google Scholar
  8. 8.
    Haralick, R. M., Lee, C., Ottenberg, K. and Nolle, M.: Analysis and Solutions of the Three Point Perspective Pose Estimation Problem. Proc. of the Int. Conf. on Computer Vision and Pattern Recognition (1991) 592–598Google Scholar
  9. 9.
    Hartley, R. I. and Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2000)Google Scholar
  10. 10.
    Horaud, R., Conio, B., and Leboulleux, O.: An Analytic Solution for the Perspective 4-Point Problem. Computer Vision, Graphics and Image Processing 47 (1989) 33–44CrossRefGoogle Scholar
  11. 11.
    Horn, B. K. P.: Closed Form Solution of Absolute Orientation Using Unit Quaternions. Journal of the Optical Society of America 5(7) (1987) 1127–1135MathSciNetGoogle Scholar
  12. 12.
    Hu, Z. Y., Wu, F. C.: A Note on the Number Solution of the Non-coplanar P4P Problem. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(4) (2002) 550–555MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hu, Z. Y., Wu F. C.: A Study on the P5P Problem. Chinese Journal of Software 12(5) (2001) 768–775 (in Chinese)Google Scholar
  14. 14.
    Mishra, B.: Algorithmic Algebra. Springer-Verlag New York (1993)zbMATHGoogle Scholar
  15. 15.
    Mikhailov G. A.: Parametric Estimates by the Monte Carlo Method. Utrcht the Netherlands Tokyo (1999)Google Scholar
  16. 16.
    Kalos M. H. and Wbitlock P. A.: Monte Carlo Methods Volume I: Basics. A Wiley Interscience Publication John Wiley & Sons New York (1986)Google Scholar
  17. 17.
    Quan, L. and Lan, Z.: Linear N-Point Camera Pose Determination. IEEE Transaction on Pattern Analysis and Machine Intelligence 21(8) (1999) 774–780CrossRefGoogle Scholar
  18. 18.
    Rives, P., Bouthémy, P., Prasada, B. and Dubois, E.: Recovering the Orientation and the Position of a Rigid Body in Space from a Single View. Technical Report INRS-Télécommunications place du commerce Ile-des-Soeurs Verdun H3E 1H6 Quebec Canada 3 (1981)Google Scholar
  19. 19.
    Su, C., Xu, Y., Li, H. and Liu, S.: Necessary and Sufficient Condition of Positive Root Number of P3P Problem (in Chinese). Chinese Journal of Computer Sciences 21 (1998) 1084–1095MathSciNetGoogle Scholar
  20. 20.
    Su, C., Xu, Y., Li, H. and Liu, S.: Application of Wu’s Method in Computer Animation. The Fifth Int. Conf. on Computer Aided Design/Computer Graphics 1 (1997) 211–215zbMATHGoogle Scholar
  21. 21.
    Winkler G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer-Verlag Press Berlin (1995)Google Scholar
  22. 22.
    Wolfe, W. J. and Jones, K.: Camera Calibration Using the Perspective View of a Triangle. Proc. SPIE Conf. Auto. Inspection Measurement 730 (1986) 47–50Google Scholar
  23. 23.
    Wu, W. T.: Mathematics Mechanization. Science Press Beijing(in Chinese) (2000) English Version Kluwer Aacademic Publishers London (2000)Google Scholar
  24. 24.
    Wolfe, W. J., Mathis D., Weber C. and Magee M.: The Perspective View of Three Points. IEEE Transaction on Pattern Analysis and Machine Intelligence 13(1) (1991) 66–73CrossRefGoogle Scholar
  25. 25.
    Yuan, J. S. C.: A General Photogrammetric Method for Determining Object Position and Orientation. IEEE Transaction on Robotics and Automation 5(2) (1989) 129–142CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jianliang Tang
    • 1
    • 2
  • Xiao-Shan Gao
    • 2
  • Wensheng Chen
    • 1
  1. 1.College of ScienceShenzhen UniversityShenzhenP.R.China
  2. 2.Key Laboratory of Mathematics MechanizationCASBeijingP.R.China

Personalised recommendations