Advertisement

The Biochemistry of Imaginal Disk Development

  • James W. Fristrom
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 5)

Abstract

The extensive developmental studies conducted by Ernst Hadorn, his students and his colleagues, and reviewed in this volume, have made imaginal disks of Drosophila one of the most extensively characterized embryonic tissues known. Through numerous investigations on determination, trans determination and differentiation imaginal disks have emerged as not only convenient tissues for biological studies, but also for molecular studies. Many important requirements for molecular biological investigations on development are met by disks. First, Drosophila melanogaster is by far the best genetically characterized multicellular organism and therefore the important advantages supplied by genetic techniques are available. Furthermore, most of the known mutants of Drosophila affect disks or structures derived from disks. Thus, mutants are available which affect viability of specific cells within disks (Fristrom, 1969a; Spreij, 1971), the viability of all disks (El Shatoury and Waddington, 1957; Stewart et al. , 1972), the developmental fate of disks (Lewis, 1964; Gehring, 1966; Ouweneel, 1969 a, b), growth of disks (Gateff and Schneiderman, 1969; Stewart et al., 1972), and possibly the capacity of disks to differentiate at metamorphosis (Stewart et al., 1972). Additionally the systematic recovery and use of temperature sensitive mutants (Suzuki, 1970) offers an important tool both to the developmental and the molecular biologist. The characteristics of imaginal disk differentiation during the prepupal period (which we call “disk metamorphosis” in this monograph) are also noteworthy.

Keywords

Juvenile Hormone Imaginal Disk Disk Cell Wing Disk rRNA Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agui, N., Yagi, S., Fukaya, M.: Effects of ecdysterone on the in vitro development of wingdiscs of rice stem borer, Chilo suppressalis, Appl. Ent. Zool. 4(3), 158–159 (1969).Google Scholar
  2. Ashburner, M.: Induction of puffs in polytene chromosomes of in vitro cultured salivaryglands of Drosophila melanogaster by ecdysone and ecdysone analogues. Nature (Lond.) 230, 222–223 (1971).Google Scholar
  3. Auerbach, C.: The development of the legs, wings and halteres in wildtype and some mutantstrains of Drosophila melanogaster. Trans. roy. Soc. Edinburgh 58, 787–815 (1936).Google Scholar
  4. Baker, P.C., Schroeder, T.E.: Cytoplasmic filaments and morphogenetic movement in theamphibian neural tube. Develop. Biol. 15, 432–450 (1967).PubMedCrossRefGoogle Scholar
  5. Becker, H. J.: Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophilaund die Entwicklungsphysiologie des Auges. Z. indukt. Abstamm- u. Vererb.-L. 88,333–373(1957).Google Scholar
  6. Berendes, H.D.: The hormone ecdysone as effector of specific changes in the pattern ofgene activities in Drosophila hydei. Chromosoma 22, 274–293 (1967).PubMedCrossRefGoogle Scholar
  7. Bodenstein, D.: Growth regulation of transplanted eye and leg discs in Drosophila. J. exp.Zool. 84, 23–39 (1940).CrossRefGoogle Scholar
  8. Britten, R. J., Kohne, D.E.: Repeated sequences in DNA. Science 161, 529–540 (1968).PubMedCrossRefGoogle Scholar
  9. Bryant, P. J.: Cell lineage relationships in the imaginal wing disk of Drosophila melanogaster.Develop. Biol. 22, 389–411 (1970).Google Scholar
  10. Bryant, P. J., Schneiderman, H. A.: Cell lineage, growth, and determination in the imaginal leg discs of Drosophila melanogaster. Develop. Biol. 20, 263–290 (1969).PubMedCrossRefGoogle Scholar
  11. Burdette, W. J.: Changes in titer of ecdysone in Bombyx mori during metamorphosis. Science 135, 432 (1962).PubMedCrossRefGoogle Scholar
  12. Burnside, M.B., Jacobson, A. G.: Analysis of morphogenetic movements in the neural plate of the newt Taricha torosa. Develop. Biol. 18, 537–552 (1968).PubMedCrossRefGoogle Scholar
  13. Carter, S.B.: Effects of cytochalasins on mammalian cells. Nature (Lond.) 213, 261–264(1967).CrossRefGoogle Scholar
  14. Chiarodo, A. J., Denys, F.R.: Fine structural features of developing leg discs of the blowfly, Sarcophaga bulleta. J. Morph. 126, 349–364 (1967).CrossRefGoogle Scholar
  15. Chihara, C., Petri, W., Fristrom, J., King, D.: The assay of ecdysones and juvenilehormones in Drosophila imaginal disks in vitro. J. Insect Physiol, (in press).Google Scholar
  16. Darnell, J. E.: Ribonucleic acids from animal cells. Bact. Rev. 32, 262–290 (1968).PubMedGoogle Scholar
  17. Denny, P. C., Tyler, A.: Activation of protein biosynthesis in non-nucleate fragments of seaurchin eggs. Biochem. Biophys. Res. Commun. 14, 245–249 (1964).PubMedCrossRefGoogle Scholar
  18. Edstrom, J. E., Daneholt, B.: Sedimentation properties of the newly synthesized RNA fromisolated nuclear components of Chironomus tentans salivary gland cells. J. molec. Biol. 28, 331–343(1967).PubMedCrossRefGoogle Scholar
  19. El Shatoury, H.H., Waddington, C.H.: The development of gastric tumours in Drosophila larvae. J. Embryol. exp. Morphol. 5, 143–152 (1957).Google Scholar
  20. Ephrussi, B., Beadle, G. W.: A technique of transplantation for Drosophila. Amer. Naturalist 70, 218–225 (1936).Google Scholar
  21. Feir, D., Winkler, G.: Ecdysone titres in the last larva and adult stages of the milkweed bug.J. Insect. Physiol. 15, 899–904 (1969).CrossRefGoogle Scholar
  22. Fristrom, D.: Cellular degeneration in the production of some mutant phenotypes inDrosophila melanogaster. Molec. Gen. Genetics 103, 363–379 (1969 a).CrossRefGoogle Scholar
  23. Fristrom, D.: Ultrastructure of developing wildtype and mutant strains of Drosophila melanogaster. Ph. D. Thesis, University of California, Berkeley (1969b).Google Scholar
  24. Fristrom, J. W.: Development of the morphological mutant cryptocephal of Drosophila melanogaster. Genetics 52, 297–318 (1965).PubMedGoogle Scholar
  25. Fristrom, J. W.: Hexosamine metabolism of imaginal disks of Drosophila melanogaster.J. Insect Physiol. 14, 729–740 (1968).CrossRefGoogle Scholar
  26. Fristrom, J.W.: The developmental biology of Drosophila. Ann. Rev. Genetics 4, 325–345(1970).CrossRefGoogle Scholar
  27. Fristrom, J.W., Brothers, L., Mancebo, V., Stewart, D.: Aspects of RNA and proteinsynthesis in imaginal discs of Drosophila melanogaster. Molec. Gen. Genet. 102, 1–14(1968).PubMedGoogle Scholar
  28. Fristrom, J.W., Heinze, W.: The preparative isolation of imaginal discs. Drosophila Inf.Serv. 43, 186 (1968).Google Scholar
  29. Fristrom, J. W., Knowles, B.B.: Studies on protein synthesis in imaginal discs of Drosophila melanogaster. Exp. Cell Res. 47, 97–107 (1967).PubMedCrossRefGoogle Scholar
  30. Fristrom, J. W., Mitchell, H.K.: The preparative isolation if imaginal discs from larvaeof Drosophila melanogaster. J. Cell Biol. 27, 445–448 (1965).PubMedCrossRefGoogle Scholar
  31. Fristrom, J. W., Raikow, R., Petri, W., Stewart, D.: In vitro evagination and RNA syn-synthesis in imaginal discs of Drosophila melanogaster. In: Hanly, E.W., (Ed.): Park CitySymposium on Problems in Biology, pp. 381–401.Salt Lake City: Univ. Utah Press 1969.Google Scholar
  32. Gall, J.G., Cohen, E.H., Polan, M.L.: Repetitive DNA sequences in Drosophila. Chromosoma 33, 319–344 (1971).PubMedCrossRefGoogle Scholar
  33. Garcia-Bellido, A., Merriam, J.R.: Parameters of the wing imaginal disc development ofDrosophila melanogaster. Develop. Biol. 24, 61–87 (1971).PubMedCrossRefGoogle Scholar
  34. Gateff, E., Schneiderman, H.A.: Neoplasms in mutant and cultured wildtype tissues ofDrosophila. National Cancer Inst. Monograph 31, 365–397 (1969).Google Scholar
  35. Gehring, W.: Bildung eines vollständigen Mittelbeines mit Sternopleura in der Antennenregion bei der Mutante Nasobemia (Ns) von Drosophila melanogaster. Arch. Julius Klaus-Stiftung 41, 44–54 (1966).Google Scholar
  36. Giles, C.H., Hassan, A.S.A., Laidlaw, M., Subramanian, R.V.R.: Adsorption at organicsurfaces. III. Some observations on the constitution of chitin and on its adsorption ofinorganic and organic acids from aqueous solution. J. Soc. Dy. Col. 74, 647–654 (1958).CrossRefGoogle Scholar
  37. Glaser, L., Brown, D.H.: The synthesis of chitin in cell-free extracts of Neurospora crassa.J. biol. Chem. 228, 729–742 (1957).PubMedGoogle Scholar
  38. Gross, P. R., Cousineau, G.H.: Effects of actinomycin D on macromolecular synthesis andearly development in sea urchin eggs in response to fertilization. Exp. Cell Res. 25,405–417 (1963).Google Scholar
  39. Heywood, S.M.: Synthesis of myosin on heterologous ribosomes. Cold Spr. Harb. Symp. quant. Biol. 34, 799–803 (1969).Google Scholar
  40. Heywood, S.M.: Specificity of mRNA binding factor in eukaryotes. Proc. nat. Acad. Sci. (Wash.) 67, 1782–1788 (1970).CrossRefGoogle Scholar
  41. Ilan, J., Ilan, J.: Stage-specific initiation factors for protein synthesis during insect development. Develop. Biol. 25, 280–292 (1971).PubMedCrossRefGoogle Scholar
  42. Kafatos, Fotis C.: Cocoonase synthesis: cellular differentiation in developing silk moths. In: Hanly, E.W., (Ed.): Park City Symposium on Problems in Biology, pp. 111 – 140. Salt Lake City: Univ. Utah Press 1969.Google Scholar
  43. Kaplanis, J.N., Thompson, M. J., Yamamoto, R.L, Robbins, W.E., Louloudes, S. J.: Ecdysones from the pupa of the tobacco hornworm Manduca sexta (Johannson). Steroids 8, 605–623 (1966).PubMedCrossRefGoogle Scholar
  44. Karfunkel, P.: The role of microtubules and microfilaments in neuralution in Xenopus. Develop. Biol. 25, 30–56 (1971).PubMedCrossRefGoogle Scholar
  45. Karlson, P., Sekeris, C.E., Maurer, R.: Zum Wirkungsmechanismus der Hormone I. Verteilung von tritium-markierten Ecdyson in Larven von Calliphora erythrocephala. Z. physiol. Chem. 336, 100–106 (1964).CrossRefGoogle Scholar
  46. Krishnakumaran, A., Berry, S.J., Oberlander, H., Schneiderman, H.A.: Nucleic acid synthesis during insect development-II. Control of DNA synthesis in the Cecropia silkworm and other saturniid moths. J. Insect Physiol. 13, 1–57 (1967).CrossRefGoogle Scholar
  47. Kurnick, N.B., Herskowitz, I.H.: The estimation of polyteny in Drosophila salivary gland nuclei based on determination of DNA content. J. Cell. Comp. Physiol. 39, 281–299 (1952).CrossRefGoogle Scholar
  48. Laird, C.D.: Chromatid structure: Relationship between DNA content and nucleotidesequence diversity. Chromosoma 32, 378–406 (1971).PubMedCrossRefGoogle Scholar
  49. Law, J.H., Yuan, C., Williams, C.M.: Synthesis of a material with high juvenile hormoneactivity. Proc. nat. Acad. Sci. (Wash.) 55, 576–578 (1966).CrossRefGoogle Scholar
  50. Leenders, H. J., Wullems, G. J., Berendes, H. D.: Competitive interaction of adenosine3′, 5′-monophosphate on gene activation by ecdysterone. Exp. Cell. Res. 63, 159–164(1970).PubMedCrossRefGoogle Scholar
  51. Lewis, E.B.: Genetic control and regulation of developmental pathways. In: Locke, M.,(Ed.): The Role of Chromosomes in Development, pp. 231–252. New York-London:Academic Press 1964.CrossRefGoogle Scholar
  52. Locke, M.: The structure and formation of the cuticulin layer in the epicuticle of an insectCalpodes ethlius (Lepidoptera, Hespeiidae). J. Morph. 118, 461–494 (1966).PubMedCrossRefGoogle Scholar
  53. Locke, M.: The structure of an epidermal cell during the development of the protein epicuticle and the uptake of molting fluid in an insect. J. Morph. 127, 7–40 (1969).CrossRefGoogle Scholar
  54. Mandaron, P.: Développement in vitro des disques imaginaux de la Drosophik. Aspectsmorphologiques et histologiques. Develop. Biol. 22, 298–320 (1970).PubMedCrossRefGoogle Scholar
  55. Mandaron, P.: Sur le mécanisme de l-évagination des disques imaginaux chez la Drosophile.Develop. Biol. 25, 581–605 (1971).Google Scholar
  56. Meyer, A.S., Hanzmann, E., Schneiderman, H.A.: The isolation and identification of thetwo juvenile hormones from the Cecropia silk moth. Arch. Biochem. Biophys. 137,190–213 (1970).PubMedCrossRefGoogle Scholar
  57. Mohan, J., Ritossa, F.M.: Regulation of ribosomal RNA synthesis and its bearing on thebobbed phenotype of Drosophila melanogaster. Develop. Biol. 22, 495– 512 (1970).PubMedCrossRefGoogle Scholar
  58. Moriyama, H., Nakanishi, K., King, D.S., Okauciii, T., Siddal, J.B., Hafferl, W.: Onthe origin and metabolic fate of a-ecdysone in insects. Gen. Comp. Endocrin. 15, 80 – 87(1970).CrossRefGoogle Scholar
  59. Munro, H., Flick, A.: The determination of nucleic acids. In: Glick, D., (Ed.): Methods ofBiochemical Analysis, Vol. 14, pp. 113 – 176. New York: Wiley; Interscience 1966.Google Scholar
  60. Oberlander, H.: Effects of ecdysone, ecdysterone, and inokosterone on the in vitro initiation of metamorphosis of wing disks of Galleria mellonella. J. Insect. Physiol. 15,297–304 (1969a).PubMedCrossRefGoogle Scholar
  61. Oberlander, H.: Ecdysone and DNA synthesis in cultured wing disks of the greater waxmoth, Galleria mellonella. J. Insect Physiol. 15, 1803–1806 (1969b).CrossRefGoogle Scholar
  62. Oberlander, H., Fulco, L.: Growth and partial metamorphosis of imaginal disks of thegreather wax moth, Galleria mellonella, in vitro. Nature (Lond.) 216, 1140 – 1141 (1967).CrossRefGoogle Scholar
  63. Ohtaki, T., Milkman, R.D., Williams, C. M.: Ecdysone and ecdysone analogues. Theirassay on the fleshfly Sarcophaga peregrina. Proc. nat. Acad. Sci. (Wash.) 58, 981–984(1967).CrossRefGoogle Scholar
  64. Ouweneel, W. J.: Morphology and development of loboid ophthalmoptera, a homoeoticmutant of Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. (1969a).Google Scholar
  65. Ouweneel, W. J.: Influence of environmental factors on the homoeotic effect of loboid ophthalmoptera in Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 164, 15–36 (1969b).CrossRefGoogle Scholar
  66. Patel, N., Madhavan, K.: Effects of hormones on RNA and protein synthesis in the imaginal wing disks of the ricini silkworm. J. Insect. Physiol. 15, 2141–2150 (1969).PubMedCrossRefGoogle Scholar
  67. Petri, W.H., Fristrom, J. W., Stewart, D. J., Hanly, E.W.: The in vitro synthesis and characteristics of ribosomal RNA in imaginal discs of Drosophila melanogaster. Molec. Gen. Genetics 110, 245–262 (1971).CrossRefGoogle Scholar
  68. Poodry, C.A., Schneiderman, H. A.: The ultrastructure of the developing leg of Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 166, 1 44 (1970).Google Scholar
  69. Poodry, C.A., Schneiderman, H. A.: Intercellular adhesivity and pupal morphogenesis in Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 168, 1–9 (1971).CrossRefGoogle Scholar
  70. Postlethwait, J.H., Schneiderman, H. A.: Induction of metamorphosis by ecdysoneanalogues: Drosophila imaginal discs cultured in vivo. Biol. Bull 138, 47 – 55 (1970).PubMedCrossRefGoogle Scholar
  71. Raikow, R., Fristrom, J. W.: Effects of ß-ecdysone on RNA metabolism of imaginal discsof Drosophila melanogaster. J. Insect Physiol. 17, 1599 – 1614 (1971).PubMedCrossRefGoogle Scholar
  72. Richards, A.G.: The integument of Arthropods, pp. 1–411. Minneapolis: Univ. Minnesota Press 1951.Google Scholar
  73. Ritossa, F. M., Atwood, K.C., Spiegelman, S.: A molecular explanation of the bobbedmutants of Drosophila as partial deficiencies of “ribosomal” DNA. Genetics 54, 819 – 834(1966).PubMedGoogle Scholar
  74. Robb, J.A.: Maintenance of imaginal discs of Drosophila melanogaster in chemically definedmedia. J. Cell Biol. 41, 876–884 (1969).PubMedCrossRefGoogle Scholar
  75. Robison, G. A., Butcher, R.W., Sutherland, E. W.: Cyclic AMP. Annual Rev. Biochem. 37, 149–174(1968).CrossRefGoogle Scholar
  76. Robson, E.A.: The cuticle of Peripatopsis moseleyi. Quart. J. Micr. Sci. 105, 281–294 (1964).Google Scholar
  77. Roller, H., Dahm, K.H., Sweeley, C. C., Trost, B.M.: The structure of the juvenilehormone. Angew. Chem. Int. Ed. Engl. 6, 179–180 (1967).CrossRefGoogle Scholar
  78. Schneider, I.: Differentiation of larval Drosophila eye-antennal discs in vitro. J. exp. Zool. 156, 91–104(1964).PubMedCrossRefGoogle Scholar
  79. Sehnal, F.: Influence of the corpus allatum on the development of internal organs in Galleria mellonella L. J. Insect Physiol. 14, 73–85 (1968).CrossRefGoogle Scholar
  80. Sengel, P., Mandaron, P.: Aspects morphologiques du développement in vitro des disquesimaginaux de la Drosophila. C. R. Acad. Sci. Paris 268, 405–407 (1969).Google Scholar
  81. Shaaya, E., Karlson, P.: Der Ecdysontiter während der Insektenentwicklung-IV. DieEntwicklung der Lepidopteren Bombyx mori und Cerura vinula L. Develop. Biol. 11,424–432 (1965a).PubMedCrossRefGoogle Scholar
  82. Shaaya, E., Karlson, P.: Der Ecdysontiter während der Insektenentwicklung-II. Die post-embryonale Entwicklung der Schmeißfliege, Calliphora erythrocephala. J. Insect Physiol.11, 65–69 (1965b).CrossRefGoogle Scholar
  83. Spooner, B.S., Wessells, N.K.: Effects of cytochalasin B upon microfilaments involved inmorphogenesis of salivary epithelium. Proc. nat. Acad. Sci. 66, 360 – 364 (1970).PubMedCrossRefGoogle Scholar
  84. Spreij, Th.E.: Cell death during the development of the imaginal disks of Calliphora erythrocephala. Neth. J. Zool. 21, 221–264 (1971).CrossRefGoogle Scholar
  85. Spreij, Th.E.: Localization of 5′-nucleotidase and its possible significance in some of the imaginal disks of Calliphora erythrocephala. Neth. J. Zool. 20, 419–432 (1970).Google Scholar
  86. Stavy, L., Gross, P. R.: The protein-synthetic lesion in unfertilized eggs. Proc. nat. Acad. Sci. (Wash.) 57, 735–742 (1967).CrossRefGoogle Scholar
  87. Stewart, D.J.: RNA synthesis in imaginal discs of a bobbed mutant of Drosophila melanogaster. Ph. D. Thesis, University of California, Berkeley (1971).Google Scholar
  88. Stewart, M., Murphy, C., Fristrom, J. W.: The recovery and preliminary characterization of x chromosome mutants affecting imaginal discs of Drosophila melanogaster. Develop. Biol. 27, 71–83 (1972).PubMedCrossRefGoogle Scholar
  89. Stumpf, H.: Die Richtungen die Teilungsspindeln auf dem Puppenflügel von Drosophila in Verlaufe der Mitosenperiode. Biol. Zbl. 75, 17–27 (1956).Google Scholar
  90. Suzuki, D.T.: Temperature sensitive mutations in Drosophila melanogaster. Science 170, 695–706 (1970).PubMedCrossRefGoogle Scholar
  91. Tartof, K.D., Perry, R.P.: The 5S RNA genes of Drosophila melanogaster. J. Molec. Biol. 51, 171–183(1970).PubMedCrossRefGoogle Scholar
  92. Tata, J.R.: Hormonal regulation of growth and protein synthesis. Nature (Lond.) 219, 331–337 (1968).CrossRefGoogle Scholar
  93. Ursprung, H., Schabtach, E.: The fine structure of the male Drosophila genital disk duringlate larval and early pupal development. Wilhelm Roux’ Arch. Entwickl.-Mech. Org.160, 243–254 (1968).CrossRefGoogle Scholar
  94. Ursprung, H., Sofer, W.H., Burroughs, N.: Ontogeny and tissue distribution of alcoholdehydrogenase in Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 164, 201–208(1970).CrossRefGoogle Scholar
  95. Wehman, H.J.: Fine structure of Drosophila wing imaginal discs during early stages ofmetamorphosis. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 163, 375–390 (1970).CrossRefGoogle Scholar
  96. Wilson, L., Bryan, J., Ruby, A., Mazia, D.: Precipitation of proteins by vinblastine andcalcium ions. Proc. nat. Acad. Sci. (Wash.) 66, 807–814 (1970).CrossRefGoogle Scholar
  97. Wyatt, G.R.: Biochemistry of insect metamorphosis. In: Etkin, E., Gilbert, L.I., (Eds.):Metamorphosis, pp. 143 – 184. New York: Appleton Century Crofts 1968.Google Scholar
  98. Zweidler, A., Cohen, L.H.: Large scale isolation and fractionation of organs of Drosophila melanogaster larvae. J. Cell Biol. 51, 240–248 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1972

Authors and Affiliations

  • James W. Fristrom
    • 1
  1. 1.Department of GeneticsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations