Advertisement

The Larval Development of Imaginal Disks

  • Rolf Nöthiger
Part of the Results and Problems in Cell Differentiation book series (RESULTS, volume 5)

Abstract

The life of holometabolous insects, such as Drosophila, is characterized by two separate and completely different phases of development. Out of the egg hatches a larva which then becomes transformed during metamorphosis into the adult insect, the imago. The future adult is “hidden” within the larva in the form of the so-called imaginal cells. After fertilization a series of syncytial divisions produces a homogeneous population of nuclei (energids) which later move into the cortical periplasm at the egg’s periphery where they form the cellular blastoderm (review by Anderson, 1972). This is probably the stage at which the presumptive imaginal cells are segregated from the larval cells (seep. 8). These two distinct populations of cells perform their specific vital functions at entirely different periods of development. During metamorphosis, the larval organization breaks down, and the adult insect is formed anew from the imaginal cells. (There are a few exceptional organ systems, e.g. the Malpighian tubules, that persist through metamorphosis.)

Keywords

Larval Development Imaginal Disk Mitotic Recombination Mature Larva Genital Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.T.: The embryology of Dacus tryoni, 2. Development of imaginal discs in the embryo. J. Embryol. exp. Tvtorph. 11, 339–351 (1963).Google Scholar
  2. Anderson, D. T.: The larval development of Dacus tryoni (Frogg.), 2. Development of imaginal rudiments other than the principle discs. Aust. J. Zool. 12, 1–8 (1964).CrossRefGoogle Scholar
  3. Anderson, D.T.: The development of holometabolous insects. In: Waddington, C.H., Counce, S.J. (Eds.): Developmental Systems. Insects. New York-London: Academic Press (in press).Google Scholar
  4. Auerbach, C.: The development of the legs, wings and haltères in wild type and some mutant strains of Drosophila melanogaster. Trans. roy. Soc. Edinb. 58, 787–815 (1936).Google Scholar
  5. Babcock, M.B.: Oviduct development in Drosophila. II. Metamorphic events in normal and ovariectomized females. Wilhelm Roux’ Arch. Entwickl.-Meth. Org. 167, 24–63 (1971).CrossRefGoogle Scholar
  6. Baker, W. K.: A clonal system of differential gene activity in Drosophila. Develop. Biol. 16, 1–17 (1967).PubMedCrossRefGoogle Scholar
  7. Baker, W.K.: Position-effect variegation. Advanc. Genet. 14, 133–169 (1968).CrossRefGoogle Scholar
  8. Bantock, C. R.: Experiments on chromosome elimination in the gall midge, Mayetiola destructor. J. Embryol. exp. Morph. 24, 257–286 (1970).PubMedGoogle Scholar
  9. Bautz, A.-M.: Chronologie de la mise en place de l’hypoderme imaginal de l’abdomen de Calliphora erythrocephala Meigen. Arch. Zool. exp. gén. 112, 157–178 (1971).Google Scholar
  10. Beadle, G. W., Tatum, E.L., Clancy, C.W.: Food level in relation to rate of development and eye pigmentation in Drosophila melanogaster. Biol. Bull. 75, 447–462 (1938).CrossRefGoogle Scholar
  11. Becker, H. J.: On X-ray induced somatic crossing over. Drosophila Inform. Serv. 30, 101 (1956).Google Scholar
  12. Becker, H. J.: Über Röntgenmosaikflecken und Defektmutationen am Auge von Drosophila und die Entwicklungsphysiologie des Auges. Z. Vererb.-Lehre 88, 333–373 (1957).Google Scholar
  13. Becker, H.J.: The influence of heterochromatin, inversion heterozygosity and somatic pairing on X-ray induced mitotic recombination in Drosophila melanogaster. Molec. Gen. Genetics 105, 203–218 (1969).CrossRefGoogle Scholar
  14. Bodenstein, D.: Investigations on the problem of metamorphosis. V. Some factors determining the facet number in the Drosophila mutant Bar. Genetics 24, 494–508 (1939).Google Scholar
  15. Bodenstein, D., Abdel-Malek, A.: The induction of aristapedia by nitrogen mustard in Drosophila virilis. J. exp. Zool. 111, 95–115 (1949).PubMedCrossRefGoogle Scholar
  16. Bryant, P. J.: Cell lineage relationships in the imaginal wing disc of Drosophila melanogaster. Develop. Biol. 22, 389–411 (1970).PubMedCrossRefGoogle Scholar
  17. Bryant, P. J.: Regeneration and duplication following operations in situ on the imaginal discs of Drosophila melanogaster. Develop. Biol. 26, 606–615 (1971).CrossRefGoogle Scholar
  18. Bryant, P. J., Schneiderman, H. A.: Cell lineage, growth and determination in the imaginal leg discs of Drosophila melanogaster. Develop. Biol. 20, 263–279 (1969).PubMedCrossRefGoogle Scholar
  19. Bull, A.L. : Bicaudal, a genetic factor which affects the polarity of the embryo in Drosophila melanogaster. J. exp. Zool. 161, 221–242 (1966).CrossRefGoogle Scholar
  20. Cameron, I. L. Cleffmann, G., : Initiation of mitosis in relation to the cell cycle following feeding of starved chickens. J. Cell Biol. 21, 169–174 (1964).PubMedCrossRefGoogle Scholar
  21. Chan, L.N., Gehring, W.: Determination of blastoderm cells in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 68, 2217–2221 (1971).CrossRefGoogle Scholar
  22. Chevais, S.: Déterminisme de la taille de l’oeil chez le mutant Bar de la Drosophile. Intervention d’une substance diffusible specifique. Bull. biol. france belg. 78, 71–110 (1944).Google Scholar
  23. Clark, A.M., Gould, A.B. Graham, S. F., : Patterns of development among mosaics in Habrobracon juglandis. Develop. Biol. 25, 133–148 (1971).PubMedCrossRefGoogle Scholar
  24. Counce, S. J.: The causal analysis of insect embryogenesis. In: Waddington, C.H., Counce, S.J. (Eds.): Developmental Systems. Insects. New York-London: Academic press (in press).Google Scholar
  25. Dahlhelm, D.: Die Entwicklung des Integumentes bei der Larve von Calliphora erythrocephala Meigen. Biol. Zbl. 86, 141–175 (1967).Google Scholar
  26. Dübendorfer, A.: Untersuchungen zum Anlageplan und Determinationszustand der weiblichen Genital- und Analprimordien von Musca domestica L. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 168, 142–168 (1971).CrossRefGoogle Scholar
  27. El Shatoury, H.H.: The structure of the lymph glands of Drosophila larvae. Wilhelm Roux’ Arch. Entwickl. Mech. Org. 147, 489–495 (1955).CrossRefGoogle Scholar
  28. Ephrussi, B., Beadle, G.W.: A technique of transplantation for Drosophila. Amer. Naturalist 70, 218–225 (1936).CrossRefGoogle Scholar
  29. Fischer, J., Rosin, S.: Das larvale Wachstum von Chironomus nuditarsis Str. Rev. Suisse Zool. 76, 727–734 (1969).Google Scholar
  30. Fristrom, D.: Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster. Molec. Gen. Genetics 103, 363–379 (1969).CrossRefGoogle Scholar
  31. Fristrom, D.: Chemical modification of cell death in the Bar eye of Drosophila. Molec. Gen. Genetics 115, 10–18 (1972).CrossRefGoogle Scholar
  32. Fristrom, J. W.: The biochemistry of imaginal disk development. This volume. Garcia-Bellido, A.: Pattern reconstruction by dissociated imaginal disc cells of Drosophila melanogaster. Develop. Biol. 14, 278–306 (1966).CrossRefGoogle Scholar
  33. Garcia-Bellido, A.: Histotypic reaggregation of dissociated imaginal disc cells of Drosophila melanogaster cultured in vivo.. Wilhelm Roux’ Arch. Entwickl.-Mech Org. 158, 212–217 (1967).CrossRefGoogle Scholar
  34. Garcia-Bellido, A.: Some parameters of mitotic recombination in Drosophila melanogaster. Molec. Gen. Genetics 115, 54–72 (1972).CrossRefGoogle Scholar
  35. Garcia-Bellido, A.: Pattern formation in imaginal disks. This volume. Garcia-Bellido, A., Merriam, J.R.: Cell lineage of the imaginal discs in Drosophila gynandromorphs. J. exp. Zool. 170, 61–76 (1969a).PubMedCrossRefGoogle Scholar
  36. Garcia-Bellido, A., Merriam, J. R.: A preliminary morphogenetic map of the wing disc. Drosophila Inform. Serv. 44, 65 (1969b).Google Scholar
  37. Garcia-Bellido, A., Merriam, J. R.: Parameters of the wing imaginal disc development of Drosophila melanogaster. Develop. Biol. 24, 61–87 (1971a).PubMedCrossRefGoogle Scholar
  38. Garcia-Bellido, A., Merriam, J. R.: Clonal parameters of tergite development in Drosophila. Develop. Biol. 26, 264–276 (1971b).PubMedCrossRefGoogle Scholar
  39. Gateff, E.: Developmental capacities of immature eye-antennal discs of Drosophila. Ph. D. thesis, University of California, Irvine, USA (1971).Google Scholar
  40. Gateff, E., Schneiderman, H.A.: Neoplasms in mutant and cultured wild-type tissues of Drosophila. Nat. Cancer Inst. Monogr. 31, 365–397 (1969).PubMedGoogle Scholar
  41. Gehring, W.: Phenocopies produced by 5-fluoro-uracil. Drosophila Inform. Serv. 39, 102 (1964).Google Scholar
  42. Gehring, W.: The stability of the determined state in cultures of imaginal disks in Drosophila. This volume. Gehring, W., Nothiger,R.: The imaginal discs of Drosophila. In: Waddington, C.H., Counce, S.J. (Eds.): Developmental Systems. Insects. New York-London: Academic Press (in press).Google Scholar
  43. Geigy, R.: Erzeugung rein imaginaler Defekte durch ultraviolette Eibcstrahlung bei Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 125, 406–447 (1931a).CrossRefGoogle Scholar
  44. Geigy, R.: Action de l’ultraviolet sur le pole germinal dans l’oeuf de Drosophila melanogaster (castration et mutabilité). Rev. Suisse Zool. 38, 187–288 (1931b).Google Scholar
  45. Geyer-Duszynska, L: Experimental research on chromosome elimination in Cecidomyidae (Diptera). J. exp. Zool. 141, 391–447 (1959).PubMedCrossRefGoogle Scholar
  46. Gilbert, L.I., Scfineiderman,H.A.: Control of growth and development in insects. Science 143, 325–333 (1964).PubMedCrossRefGoogle Scholar
  47. Gloor, H.: Phänokopie-Versuche mit Aether an Drosophila. Rev. Suisse Zool. 54, 637–712 (1947).Google Scholar
  48. Grigliatti, T., Suzuki, D.T.: Temperature-sensitive mutations in Drosophila melanogaster, VIII. The homeotic mutant, ss a40a. Proc. nat. Acad. Sci. (Wash.) 68, 1307–1311 (1971).CrossRefGoogle Scholar
  49. Gsell, R.: Untersuchungen zur Stabilität einer yellow Positionseffekt-Variegation in Imaginal- scheiben-Kulturen von Drosophila melanogaster. Molec. Gen. Genetics 110, 218–237(1971).CrossRefGoogle Scholar
  50. Gustafson, T., Wolpert, L.: Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. 42, 442–498 (1967).PubMedCrossRefGoogle Scholar
  51. Hadorn, E.: Regulation and differentiation within field districts in imaginal discs of Drosophila. J. Embryol. exp. Morph. 1, 213–216 (1953).Google Scholar
  52. Hadorn, E.: Differenzierungsleistungen wiederholt fragmentierter Teilstücke männlicher Genitalscheiben von Drosophila melanogaster nach Kultur in vivo. Develop. Biol. 7, 617–629 (1963).CrossRefGoogle Scholar
  53. Hadorn, E.: Problems of determination and transdetermination. In “Genetic control of differentiation”. Brookhaven Symp. Biol. 18, 148–161 (1965).Google Scholar
  54. Hadorn, E.: Konstanz, Wechsel und Typus der Determination und Differenzierung in Zellen aus männlichen Genitalanlagen von Drosophila melanogaster nach Dauerkultur in vivo. Develop. Biol. 13, 424–509 (1966).PubMedCrossRefGoogle Scholar
  55. Hadorn, E., Anders, G., Ursprung, H.: Kombinate aus teilweise dissoziierten Imaginal-scheiben verschiedener Mutanten und Arten von Drosophila. J. exp. Zool. 142, 159–175 (1959).PubMedCrossRefGoogle Scholar
  56. Hadorn, E., Bertani, G., Gallera, J.: Regulationsfähigkeit und Feldorganisation der männlichen Genital-Imaginalscheibe von Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 144, 31–70 (1949).CrossRefGoogle Scholar
  57. Hadorn, E., Garcia-Bellido, A.: Zur Proliferation von Drosophila Zellkulturen im Adult-milieu. Rev. Suisse Zool. 71, 576–582 (1964).Google Scholar
  58. Hadorn, E., Gsell, R., Schultz, J.: Stability of a position-effect variegation in normal and transdetermined larval blastemas from Drosophila melanogaster. Proc. Nat. Acad. Sci., (Wash.) 65, 633–637 (1970).CrossRefGoogle Scholar
  59. Hadorn, E., Hürlimann, R., Mindek, G., Schubiger, G., Staub, M.: Entwicklungsleistungen embryonaler Blasteme von Drosophila nach Kultur im Adultwirt. Rev. Suisse Zool. 75, 557–569 (1968).PubMedGoogle Scholar
  60. Haendle, J.: Röntgeninduzierte mitotische Rekombination bei Drosophila melanogaster. I. Ihre Abhängigkeit von der Dosis, der Dosisrate und vom Spektrum. Molec. Gen. Genetics 113, 114–131 (1971a).Google Scholar
  61. Haendle, J.: Röntgeninduzierte mitotische Rekombination bei Drosophila melanogaster. IL Beweis der Existenz und Charakterisierung zweier von der Art des Spektrums abhängiger Reaktionen. Molec. Gen. Genetics 113, 132–149 (1971b).Google Scholar
  62. Henke, K., Maas, H.: Über sensible Perioden der allgemeinen Körpergliederung von Drosophila. Nachr. Akad. Wiss. Göttingen, Math.-phys. Kl. 1, 3–4 (1946).Google Scholar
  63. Hinton, C. W.: The behaviour of an unstable ring-chromosome of Drosophila melanogaster. Genetics 40, 951–961 (1955).PubMedGoogle Scholar
  64. Howland, R.B., Child, G. P.: Experimental studies on development in Drosophila melanogaster. I. Removal of protoplasmic materials during late cleavage and early embryonic stages. J. exp. Zool. 70, 415–427 (1935).CrossRefGoogle Scholar
  65. Howland, R.B., Sonnenblick, B. P.: Experimental studies on development in Drosophila melanogaster. II. Regulation in the early egg. J. exp. Zool. 73, 109–125 (1936).CrossRefGoogle Scholar
  66. Illmensee, K.: Transplantation of embryonic nuclei into unfertilized eggs of Drosophila melanogaster. Nature (Lond.) 219, 1268–1269 (1968).CrossRefGoogle Scholar
  67. Illmensee, K.: Imaginal structures after nuclear transplantation in Drosophila melanogaster. Naturwissenschaften 11, 550–551 (1970).CrossRefGoogle Scholar
  68. Illmensee, K.: Developmental potencies of nuclei from cleavage, preblastoderm, and syncytial blastoderm transplanted into unfertilized eggs of Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. (in press).Google Scholar
  69. Janning, W.: Bestimmung des Heterochromatisierungsstadiums beim white-PositionsefTekt mittels röntgeninduzierter mitotischer Rekombination in der Augenanlage von Drosophila melanogaster. Molec. Gen. Genetics 107, 128–149 (1970).CrossRefGoogle Scholar
  70. Kalthoff, K.: Position of targets and period of competence for UV-induction of the malformation “double abdomen” in the egg of Smittia spec. (Diptera, Chironomidae). Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 168, 63–84 (1971a).CrossRefGoogle Scholar
  71. Kalthoff, K.: Photoreversion of UV-induction of the malformation “double abdomen” in the egg of Smittia spec. (Diptera, Chironomidae). Develop. Biol. 25, 119–132 (1971b).PubMedCrossRefGoogle Scholar
  72. Karfunkel, P.: The role of microtubules and microfilaments in neurulation in Xenopus. Develop. Biol. 25, 30–56 (1971).PubMedCrossRefGoogle Scholar
  73. Laugé, G.: Recherches expérimentales sur la détermination et la différenciation des caractères morphologiques et histologiques des intersexués triploides de Drosophila melanogaster Meig. Ann. Embryol. Morph. 2, 245–270 (a), and 273–299 (b) (1969).Google Scholar
  74. Lawrence, P.A.: Development and determination of hairs and bristles in the milkweed bug, Oncopeltusfasciatus (Lygaeidae, Hemipterd). J. Cell Sci. 1, 475–498 (1966).PubMedGoogle Scholar
  75. Lees, A.D., Waddington, C.H.: The development of the bristles in normal and some mutant types of Drosophila melanogaster. Proc. Roy. Soc. B (Edinb.) 131, 87–110 (1942).CrossRefGoogle Scholar
  76. Lindsley, D.L., Grell, E.H.: Genetic variations of Drosophila melanogaster. Carnegie Inst. Wash. Publ. 627 (1968).Google Scholar
  77. Lübbecke, E.A.: Autoradiographische Bestimmung der DNS-Synthese-Dauer von Zellen der Flügelimaginalanlage von Ephestia kühniella. Z. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 162, 1–18 (1969).CrossRefGoogle Scholar
  78. Lüönd, H.: Untersuchungen zur Mustcrgliederung in fragmentierten Primordien des männlichen Geschlechtsapparates von Drosopkila séguyi. Develop. Biol. 3, 615–656 (1961).PubMedCrossRefGoogle Scholar
  79. Mahowald, A.P.: Polar granules of Drcsophila. II. Ultrastructural changes during early embryogenesis. J. exp. Zool. 167, 237–261 (1968).PubMedCrossRefGoogle Scholar
  80. Mahowald, A. P.: Origin 2nd continuity of polar granules. In: Results and problems in cell differentiation, Vol. 2, pp. 158–169, Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  81. Mandaron, P.: Développement in vitro des disques imaginaux de la Drosophile. Aspects morphologiques et histologiques. Develop. Biol. 22, 298–320 (1970).PubMedCrossRefGoogle Scholar
  82. Mandaron, P.: Sur le mécanisme de l’évagination des disques imaginaux chez la Drosophile. Develop. Biol. 25, 581–605 (1971).PubMedCrossRefGoogle Scholar
  83. Merriam, J.R., Fyffe, W.E.: Somatic crossing over in Drosophila melanogaster: I. Dose response curves for X-ray induction and effects of dose fractionation. Mutation Res. 14, 309–314(1972).CrossRefGoogle Scholar
  84. Merriam, J. R., Garcia-Bellido, A.: A model for somatic pairing derived from somatic crossing over with third chromosome rearrangements in Drosophila melanogaster. Molec. Gen. Genetics 115, 302–313 (1972).CrossRefGoogle Scholar
  85. Merriam, J. R., Nöthiger, R., Garcia-Bellido, A.: Are dicentric anaphase bridges formed by somatic recombination in X chromosome inversion heterozygotes of Drosophila melanogaster? Molec. Gen. Genetics 115, 294–301 (1972).CrossRefGoogle Scholar
  86. Mindek, G.: Metamorphosis of imaginal discs of Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 169, 353–356 (1972).CrossRefGoogle Scholar
  87. Mindek, G., Nöthiger, R.: Parameters influencing the acquisition of competence for metamorphosis in imaginal disks of Drosophila (In prep.).Google Scholar
  88. Murphy, C.: Determination of the dorsal mesothoracic disc in Drosophila. Develop. Biol. 15, 368–394 (1967).PubMedCrossRefGoogle Scholar
  89. Muth, F. W.: Untersuchungen zur Wirkungsweise der Mutante “kfl” bei der Mehlmotte Ephestia kühniella Z. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 153, 370–418 (1961).CrossRefGoogle Scholar
  90. Nesbitt, M.N.: X chromosome inactivation mosaicism in the mouse. Develop. Biol. 26, 252–263 (1971).CrossRefGoogle Scholar
  91. Newby, W.W.: A study of intersexes produced by a dominant mutation in Drosophila virilis, Blanco Stock. Univ. Texas Publ. 4228, 113–145 (1942).Google Scholar
  92. Nöthiger, R.: Differenzierungsleistungen in Kombinaten, hergestellt aus Imaginalscheiben verschiedener Arten, Geschlechter und Körpersegmente von Drosophila. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 155, 269–301 (1964).CrossRefGoogle Scholar
  93. Nöthiger, R., Dübendorfer, A.: Somatic crossing-over in the housefly. Molec. Gen. Genetics 112, 9–13 (1971).CrossRefGoogle Scholar
  94. Nöthiger, R., Oberlander, H.: Differentiation of pulsating regions in genital imaginal discs cultured in vivo (Drosophila melanogaster). J. exp. Zool. 164, 61–68 (1967).PubMedCrossRefGoogle Scholar
  95. Nöthiger, R., Schubiger, G.: Developmental behaviour of fragments of symmetrical and asymmetrical imaginal discs of Drosophila melanogaster (Diptera). J. Embryol. exp. Morph. 16, 355–368 (1966).Google Scholar
  96. Nöthiger, R., Strub, S.: Imaginal defects after UV-microbeam irradiation of early cleavage stages of Drosophila melanogaster. Rev. Suisse Zool. 79, 261–219 (1972).Google Scholar
  97. Nöthiger, R., Ulrich, E.: Cell lineage and determination in the male genital disk of Drosophila melanogaster. (In prep.).Google Scholar
  98. Oberlander, H.: Hormonal control of disk development. This volume. Oelhafen, F.: Zur Embryogenese von Culex pipens: Markierungen und Exstirpationen mit UV-Strahlenstich. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 153, 120–157 (1961).CrossRefGoogle Scholar
  99. Okada, E., Waddington, C.H.: The submicroscopic structure of the Drosophila egg. J. Embryol. exp. Morph. 7, 583–597 (1959).PubMedGoogle Scholar
  100. Patterson, J. T., Stone, W.: Gynandromorphs in Drosophila melanogaster. Univ. Texas Publ. 3825, 1–67 (1938).Google Scholar
  101. Pentz, S., Krause, G.: Nester aberranter Schuppen nach R-Bestrahlung der Flügelanlagen in weiblichen Diapause- und Nondiapause-Raupen von Plodia (Lepidoptera). Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 160, 167–186 (1968).CrossRefGoogle Scholar
  102. Perry, M.M.: Further studies on the development of the eye of Drosophila melanogaster. I. The ommatidia. J. Morph. 124, 227 148 (1968).Google Scholar
  103. Poodry, C. A., Bryant, P., Schneiderman, H. A.: The mechanism of pattern reconstruction by dissociated imaginal discs of Drosophila melanogaster. Develop. Biol. 26, 464–477 (1971).PubMedCrossRefGoogle Scholar
  104. Poodry, C. A., Schneiderman, H. A.: The ultrastructure of the developing leg of Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 166, 1–44 (1970).CrossRefGoogle Scholar
  105. Poodry, C.A., Schneiderman, H.A.: Intercellular adhesivity and pupal morphogenesis in Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 168, 1–9 (1971).CrossRefGoogle Scholar
  106. Postlethwait, J.H., Poodry, C.A., Schneiderman, H. A.: Cellular dynamics of pattern duplication in imaginal discs of Drosophila melanogaster. Develop. Biol. 26, 125–132 (1971).PubMedCrossRefGoogle Scholar
  107. Postlethwait, J. H., Schneiderman, H.A.: A clonal analysis of determination in Antenna- pedia, a homoeotic mutant of Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 64, 176–183 (1969).CrossRefGoogle Scholar
  108. Postlethwait, J.H., Schneiderman, H.A.: A clonal analysis of development in Drosophila melanogaster: morphogenesis, determination and growth in the wild-type antenna. Develop. Biol. 24, 477–519 (1971a).PubMedCrossRefGoogle Scholar
  109. Postlethwait, J.H., Schneiderman, H.A.: Pattern formation and determination in the antenna of the homoeotic mutant Antennapedia of Drosophila melanogaster. Develop. Biol. 25, 606–640 (1971b).PubMedCrossRefGoogle Scholar
  110. Ripoll, P.: The embryonic organization of the imaginal wing disc of Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 169, 200–215 (1972).CrossRefGoogle Scholar
  111. Saunders, J. W. Jr., Fallon, J. F.: Cell death in morphogenesis. In: Locke, M. (Ed.): Major Problems in Developmental Biology, p. 289–314. New York-London: Academic Press 1966.Google Scholar
  112. Schläpfer, T.: Der Einfluß des adulten Wirtsmilieus auf die Entwicklung von larvalen Augenantennen-Imaginalscheiben von Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 154, 378–404 (1963).CrossRefGoogle Scholar
  113. Schneider, I.: Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. exp. Morph. 27, 353–365 (1972).PubMedGoogle Scholar
  114. Schubiger, G.: Anlageplan, Determinationszustand und Transdeterminationsleistungen der männlichen Vorderbeinscheibe von Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 160, 9–40 (1968).CrossRefGoogle Scholar
  115. Schubiger, G.: Regeneration, duplication and transdetermination in fragments of the leg disc of Drosophila melanogaster. Develop. Biol. 26, 277–295 (1971).PubMedCrossRefGoogle Scholar
  116. Schubiger, M., Schneiderman, H.A.: Nuclear transplantation in Drosophila melanogaster. Nature (Lond.) 230, 185–186 (1971).CrossRefGoogle Scholar
  117. Schweizer, P.: Wirkung von Röntgenstrahlen auf die Entwicklung der männlichen Genital- primordien von Drosophila melanogaster und Untersuchung von Erholungs Vorgängen durch Zellklon-Analyse. Biophysik 8, 158–188 (1972).PubMedCrossRefGoogle Scholar
  118. Shaaya, E., Karlson, P.: Der Ecdysontiter während der Insektenentwicklung. IL Die postembryonale Entwicklung der Schmeißfliege Calliphora erythrocephala Meig. J. Insect. Physiol. 11, 65–69 (1965).CrossRefGoogle Scholar
  119. Shearn, A., Rice, T., Garen, A., Gehring, W.: Imaginal disc abnormalities in lethal mutants of Drosophila. Proc. nat. Acad. Sci. (Wash.) 68, 2594–2598 (1971).CrossRefGoogle Scholar
  120. Spreij, T.E.: Cell death during the development of the imaginal disks of Calliphora erythrocephala. Neth. J. Zool. 21, 221–264 (1971).CrossRefGoogle Scholar
  121. Stern, C.: Somatic crossing over and segregation in Drosophila melanogaster. Genetics 21, 625–730(1936).PubMedGoogle Scholar
  122. Stern, C.: The prospective significance of imaginal discs in Drosophila. J. Morph. 67, 107–122(1940).CrossRefGoogle Scholar
  123. Stern, C.: Genetic Mosaics and Other Essays. Cambridge: Harvard University Press 1968.Google Scholar
  124. Stewart, R.N., Dermen, H.: Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Amer. J. Bot. 57, 816–826 (1970).CrossRefGoogle Scholar
  125. Stewart, M., Murphy, C., Fristrom, J. W.: The recovery and preliminary characterization of X chromosome mutants affecting imaginal discs of Drosophila melanogaster. Develop. Biol. 27, 71–83 (1972).PubMedCrossRefGoogle Scholar
  126. Stumpf, H.: Die Richtungen der Teilungsspindeln auf dem Puppenflügel von Drosophila im Verlaufe der Mitosenperiode. Biol. Zbl. 75, 17–27 (1956).Google Scholar
  127. Sturtevant, A.H.: The claret mutant type of Drosophila simulans: a study of chromosome elimination and of cell-lineage. Z. wiss. Zool. 135, 324–355 (1929).Google Scholar
  128. Tettenborn, U., Dofuku, R., Ohno, S.: Noninducible phenotype exhibited by a proportion of female mice heterozygous for the X-linked testicular feminisation mutation. Nature New Biol. 234, 37–40 (1971).PubMedCrossRefGoogle Scholar
  129. Timm, U.: Quantitative Untersuchungen über das Zellteilungswachstum der Flügelanlagen von Ephestia kühniella Zeller in Regenerationsexperimenten. Thesis, Math.-naturw. Fakultät der Universität Köln, Köln, W-Germany (1970).Google Scholar
  130. Tobler, H.: Zellspezifische Determination und Beziehung zwischen Proliferation und Transdetermination in Bein- und Flügelprimordien von Drosophila melanogaster. J. Em-bryol. exp. Morph. 16, 609–633 (1966).Google Scholar
  131. Tokunaga, C.: Cell lineage and differentiation on the male foreleg of Drosophila melanogaster. Develop. Biol. 4, 489–516 (1962).PubMedCrossRefGoogle Scholar
  132. Trinkaus, J. P.: Morphogenetic cell movements. In: Locke, M. (Ed.): Major Problems in Developmental Biology, pp. 125–176. New York-London: Academic Press 1966.Google Scholar
  133. Ulrich, E.: Cell lineage, Determination und Regulation in der weiblichen Genitalimaginal-scheibe von Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 167, 64–82 (1971).CrossRefGoogle Scholar
  134. Ursprung, H.: Fragmentierungs- und Bestrahlungsversuche zur Bestimmung von Determinationszustand und Anlageplan der Genitalscheiben von Drosophila melanogaster. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 151, 504–558 (1959).CrossRefGoogle Scholar
  135. Ursprung, H.: Der Einfluß des Wirtsalters auf die Entwicklungsleistung von Sagittalhälften männlicher Genitalscheiben von Drosophila melanogaster. Develop. Biol. 4, 22–39 (1962).PubMedCrossRefGoogle Scholar
  136. Ursprung, H.: The fine structure of imaginal disks. This volume. Ursprung, H., Schabtach, E.: The fine structure of the male Drosophila genital disk during late larval and early pupal development. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 160, 243–254 (1968).CrossRefGoogle Scholar
  137. Vig, B.K., Paddock, E.F.: Studies on the expression of somatic crossing over in Glycine max. L. Theoret. Appl. Genetics 40, 316–321 (1970).CrossRefGoogle Scholar
  138. Vogt, M.: Zur labilen Determination der Imaginalscheiben von Drosophila. IL Die Umwandlung präsumptiven Fühlergewebes in Beingewebe. Biol. ZbL 65, 238–254 (1946).Google Scholar
  139. Waddington, C.H.: Some developmental effects of X-rays in Drosophila. J. exp. Biol. 19, 101–117(1942).Google Scholar
  140. Waddington, C.H.: New Patterns in Genetics and Development, p. 213. New York-London: Columbia University Press 1962.Google Scholar
  141. Waddington, C.H.: Fields and gradients. In: Locke, M. (Ed.): Major Problems in Developmental Biology, pp. 105–124. New York-London: Academic Press 1966.Google Scholar
  142. Waddington, C.H., Perry, M.M.: The ultrastructure of the developing eye of Drosophila. Proc. roy. Soc. B. (Edinb.) 153, 155–178 (1960).CrossRefGoogle Scholar
  143. Wald, H.: Cytological studies on abnormal development of eggs of the claret mutant type of Drosophila simulans. Genetics 21, 264–281 (1936).PubMedGoogle Scholar
  144. Walen, K. H.: Somatic crossing over in relationship to heterochromatin in Drosophila melanogaster. Genetics 49, 905–923 (1964).PubMedGoogle Scholar
  145. Wehman, H.J.: Fine structure of Drosophila wing imaginal discs during early stages of metamorphosis. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 163, 375–390 (1969).CrossRefGoogle Scholar
  146. Wildermuth, H.R.: Differenzierungsleistungen, Mustergliederung und Transdeterminationsmechanismen in hetero- und homoplastischen Transplantaten der Rüsselprimordien von Drosophila. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 160, 41–75 (1968).CrossRefGoogle Scholar
  147. Wildermuth, H.R.: Determination and transdetermination in cells of the fruitfly. Sci. Prog. Oxf. 58, 329–358 (1970).Google Scholar
  148. Wilt, F.H., Wessells, N.K.: Methods in Developmental Biology. New York: T. Y. Crowell Comp. 1967.Google Scholar
  149. Zalokar, M.: L’ablation des disques imaginaux chez la larve de Drosophile. Rev. Suisse Zool. 50, 232–236 (1943).Google Scholar
  150. Zalokar, M.: Transplantation of nuclei in Drosophila melanogaster. Proc. nat. Acad. Sci. (Wash.) 68, 1539–1541 (1971).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1972

Authors and Affiliations

  • Rolf Nöthiger
    • 1
  1. 1.Zoologisches InstitutUniversität ZürichZürichSwitzerland

Personalised recommendations