Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 129))

Abstract

Although fuzzy systems and artificial neural networks are both universal function approximators, fuzzy systems have the advantage of using a form of knowledge representation which in general is interpretable by human beings. However, unlike neural networks, fuzzy systems have no built-in learning mechanism. To compensate for this deficiency, genetic algorithms (GAs) have often been used to automate the design of fuzzy systems. Unfortunately, the inconsiderate use of GAs and the temptation to automate every conceivable aspect of the design can lead to the design of fuzzy systems with obscure structures that are not easily interpretable. In this chapter, we describe our efforts for constraining the use of genetic algorithms and evolutionary programming in order to design fuzzy logic controllers (fuzzy systems used in control applications) which are both accurate and interpretable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. A. Zadeh, “Fuzzy Sets,” Information and Control, vol. 21, pp. 338–353, 1965.

    Article  MathSciNet  Google Scholar 

  2. L. A. Zadeh, “Fuzzy Set and Systems,” in Proc. Symp. Syst. Theory, pp. 29–37, Polytech. Inst. Brooklyn, 1965.

    Google Scholar 

  3. L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes,” IEEE Transactions on Systems, Man & Cybernetics, vol. 1, pp. 28–44, 1973.

    Article  MathSciNet  Google Scholar 

  4. L. A. Zadeh, “The Concept of a Linguistic Variable and its Application to Approximate Reasoning,” Information Sciences, vol. 8, pp. 43–80, 1975.

    Article  MATH  Google Scholar 

  5. W. S. McCulloch and W. A. Pitts, “A logical calculus of the ideas immanent in nervous activity,” Bulletin of Mathematics and Biophysics, vol. 5, pp. 115–133, 1943.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. G. Farley and W. A. Clark, “Simulation of self-organizing systems by digital computers,” Institute of Radio Engineers — Transactions of Professional Group of Information Theory, vol. PGIT-4, pp. 76–84, 1954.

    Article  MathSciNet  Google Scholar 

  7. F. Rosenblatt, “The perceptron: A probabilistic model for information storage and organization in the brain,” Psychoanalytic Review, vol. 65, pp. 386–408, 1958.

    MathSciNet  Google Scholar 

  8. B. Widrow and M. E. Hoff, “Adaptive switching circuits,” in WESCON Convention, Record Part IV, pp. 96–104, 1960.

    Google Scholar 

  9. E. R. Caianiello, “Outline of a theory of thought-processes and thinking machines,” Journal of Theoretical Biology, vol. 2, pp. 204–235, 1961.

    Article  MathSciNet  Google Scholar 

  10. K. Steinbuch, “Die Lernmatrix,” Kybernetik, vol. 1, pp. 36–45, 1961.

    Article  MATH  Google Scholar 

  11. J. H. Holland, Adaptation in natural and artificial systems. Ann Arbor, Michigan: The University of Michigan, 1975.

    Google Scholar 

  12. A. S. Fraser, “Simulation of Genetic Systems by Automatic Digital Computers,” Australian Journal of Biological Sciences, vol. 10, pp. 484–491, 1957.

    Google Scholar 

  13. H. J. Bremermann, M. Rogson, and S. Salaff, “Global Properties of Evolution Processes,” in Natural Automata and Useful Simulations (H. H. Patee, E. A. Edlsack, L. Fein, and A. B. Callahan, eds.), pp. 3–41, H. J. Bremermann and Spartan Books, 1966.

    Google Scholar 

  14. B. Kosko, Neural Networks and Fuzzy Systems. Englewood Cliffs, NJ: Prentice Hall, 1992.

    MATH  Google Scholar 

  15. R. Jang, “Self-learning Fuzzy Controllers Based on Temporal Back Propagation,” IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 714–723, 1992.

    Article  Google Scholar 

  16. R. Jang, “Fuzzy Controller Design Without Domain Experts,” in Proc. IEEE International Conference on Fuzzy Systems, pp. 289–296, 1992.

    Chapter  Google Scholar 

  17. C. Karr, “Genetic Algorithms for Fuzzy Controllers ,” AI Expert, vol. 6, pp. 26–33, February 1991.

    MathSciNet  Google Scholar 

  18. D. T. Pham and D. Karaboga, “Optimum Design of Fuzzy Logic Controllers Using Genetic Algorithms,” Journal of Systems Engineering, vol. 1, no. 2, pp. 114–118, 1991.

    Google Scholar 

  19. A. Homaifar and E. McCormick, “Full design of fuzzy controllers using genetic algorithms,” in SPIE Vol. 1766 – Neural and Stochastic Methods in Image and Signal Processing, pp. 393–404, 1992.

    Chapter  Google Scholar 

  20. M. A. Lee and H. Takagi, “Integrating Design Stages of Fuzzy Systems using Genetic Algorithms,” in Proc. 2nd IEEE International Conference on Fuzzy systems, pp. 612–617, 1993.

    Google Scholar 

  21. K. C. Ng and Y. Li, “Design of Sophisticated Fuzzy Logic Controllers Using Genetic Algorithms,” in Proc. 3rd IEEE International Conference on Fuzzy systems, pp. 1708–1712, 1994.

    Google Scholar 

  22. M. G. Cooper, “Evolving a Rule-Based Fuzzy Controller,” Simulation, vol. 65, no. 1, pp. 67–73, 1995.

    Article  Google Scholar 

  23. D. A. Linkens and H. O. Nyonggesa, “Genetic Algorithms for fuzzy control Part 1: Offline system development and application,” IEE Proc.-Control Theory Appl., vol. 142, pp. 161–176, May 1995.

    Article  MATH  Google Scholar 

  24. D. A. Linkens and H. O. Nyonggesa, “Genetic Algorithms for fuzzy control Part 2: Online system development and application,” IEE Proc.-Control Theory Appl., vol. 142, pp. 177–185, May 1995.

    Article  MATH  Google Scholar 

  25. M. Setnes and H. Roubos, “GA-Fuzzy Modeling and Classification: Complexity and Performance,” IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 509–522, 2000.

    Article  Google Scholar 

  26. O. Cordon, F. Herrera, F. Hoffman and L. Magdalena (eds.), “Genetic Fuzzy Systems — Evolutionary Tuning and Learning of Fuzzy Knowledge Bases,” in Advances in Fuzzy Systems — Applications and Theory, vol. 19, World Scientific, 2001.

    Google Scholar 

  27. S. Assilian and E. H. Mamdani, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,” International Journal of Man-Machine Studies, vol. 7, no. 1, pp. 1–13, 1974.

    Google Scholar 

  28. T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC-15, pp. 116–132, January/February 1985.

    Article  Google Scholar 

  29. P. J. MacVicar-Whelan, “Fuzzy sets for man-machine interaction,” International Journal of Man-Machine Studies, vol. 8, pp. 687–697, 1976.

    Article  MATH  Google Scholar 

  30. P. J. King and E. H. Mamdani, “The Application of Fuzzy Control Systems to Industrial Processes,” Automatica, vol. 13, pp. 235–242, 1977.

    Article  Google Scholar 

  31. R. R. Yager and D. P. Filev, Essentials of fuzzy modeling and control. New York, NY: John Wiley and Sons, Inc, 1994.

    Google Scholar 

  32. D. S. Feldman, “Fuzzy Logic Synthesis with Genetic Algorithms,” in Proc. 5th International Conference on Genetic Algorithms, pp. 312–17, 1993.

    Google Scholar 

  33. H. Ishibuchi and T. Murata, “Minimizing the Fuzzy Rule Base and Maximizing Its Performance by a Multi-Objective Genetic Algorithms,” in Proc. 6th IEEE International Conference on Fuzzy systems, pp. 259–264, 1997.

    Chapter  Google Scholar 

  34. R. Rovatti, R. Guerrieri, and G. Baccarani, “An Enhanced Two-Level Boolean Synthesis Methodology for Fuzzy Rules Minimization,” IEEE Transactions on Fuzzy Systems, vol. 3, pp. 288–299, August 1995.

    Article  Google Scholar 

  35. P. Thrift, “Fuzzy Logic Synthesis with Genetic Algorithms,” in Proc. 4th International Conference on Genetic Algorithms, pp. 509–513, 1992.

    Google Scholar 

  36. G. Raju, J. Zhou, and R. A. Kisner, “Hierarchical Fuzzy Control,” International Journal of Control, vol. 54, no. 5, pp. 1201–1216, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  37. D. E. Goldberg, Genetic Algorithms in Search, Optimization and MachineLearning. Ann Arbor, Michigan: Addison-Wesley, 1989.

    Google Scholar 

  38. L. Davis, A handbook of genetic algorithms. New York: Van Nostrand Reinhold, 1990.

    Google Scholar 

  39. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs. New York: Springer-Verlag, 1992.

    Book  MATH  Google Scholar 

  40. L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence Through Simulated Evolution. New York: Wiley Publishing, 1966.

    MATH  Google Scholar 

  41. D. B. Fogel, L. J. Fogel, and J. W. Atmar, “Meta-Evolutionary Programming,” in Proc. 25th Asilomar Conference on Signals, Systems & Computers (R. R. Chen, ed.), (Pacific Grove, CA), pp. 540–545, 1991.

    Google Scholar 

  42. D. B. Fogel, L. J. Fogel, J. W. Atmar, and G. B. Fogel, “Hierarchic methods of Evolutionary Programming,” in Proc. ist Annual Conference on Evolutionary Programming, (San Diego, CA), pp. 175–182, Evolutionary Programming Society, 1992.

    Google Scholar 

  43. N. Saravanan, D. B. Fogel, and K. M. Nelson, “A Comparison of Methods for Self-Adaptation in Evolutionary Algorithms,” BioSystems, vol. 36, pp. 157–166, 1995.

    Article  Google Scholar 

  44. D. B. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

    Google Scholar 

  45. T. Bäck, Evolutionary Algorithms in Theory and Practice. New York: Oxford University Press, 1996.

    MATH  Google Scholar 

  46. M. Gen and R. Cheng, “A survey of Penalty Techniques in Genetic Algorithms,” in Proc. 1996 IEEE International Conference on Evolutionary Computation, (Japan), pp. 804–809, 1996.

    Google Scholar 

  47. F. Glover and H. Greenberg, “New approaches for heuristic search: a bilateral linkage with artificial intelligence,” European Journal of Operational Research, vol. 39, pp. 119–130, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  48. G. Syswerda, “Uniform crossover in genetic algorithms,” in Proc. 3rd IEEE International Conference on Genetic Algorithms, pp. 2–9, 1989.

    Google Scholar 

  49. G. Syswerda, “A study of reproduction in generational and steady state genetic algorithms,” in Proc. of a workshop on foundations of genetic algorithms and classifier systems (G. J. E. Rawlins, ed.), (Hillsdale, NJ), pp. 94–101, Lawrence Eribaum Publishers, 1991.

    Google Scholar 

  50. M. Rebaudengo and M. S. Reorda, “An experimental analysis of the effects of Migration in Parallel Genetic Algorithms,” in Proc. EUROMICRO Workshop on Parallel and Distributed Processing, pp. 232–238, 1992.

    Google Scholar 

  51. T. C. Chin, H. C. Hua, K. W. Yeo, and W. L. Yeo, ”Genetic Algorithm-based Optimal Fuzzy Controller,” in Proc. 2nd International Conference on Intelligent Systems, pp. B135-B140, 1994.

    Google Scholar 

  52. D. I. Brubaker, “Fuzzy-logic basics: intuitive rules replace complex math,” EDNASIA Magazine, vol. 37, no. 13, pp. 111–116, 1992.

    Google Scholar 

  53. F. Cheong and R. lai, “Designing a hierarchical fuzzy logic controller using differential evolution,” in Proc. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’99), pp. I-277–I-282, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheong, F., Lai, R. (2003). Constrained optimization of genetic fuzzy systems. In: Casillas, J., Cordón, O., Herrera, F., Magdalena, L. (eds) Accuracy Improvements in Linguistic Fuzzy Modeling. Studies in Fuzziness and Soft Computing, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37058-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-37058-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05703-8

  • Online ISBN: 978-3-540-37058-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics