Skip to main content

A Microcalcification Detection Using Multi-Layer Support Vector Machine in Korean Digital Mammogram

  • Conference paper
  • 46 Accesses

Part of the IFMBE Proceedings book series (IFMBE,volume 14)

Abstract

A computer-aided diagnosis (CAD) system has been examined to reduce the effort of radiologist. In the mammogram, it is helpful to improve the diagnostic accuracy of malignancy microcalcifications in early stage of detecting breast cancer. In this paper, we propose a microcalcification detection method using multi-layer support vector machine (SVM) classifiers to determine whether microcalcifications are malignant or benign tumors. The proposed microcalcification detection is divided into two steps, each of which uses a SVM classifier. First, potential ROIs (Region of interest) those are suspicious as malignant tumors are detected as a coarse detection level. And then, each ROI is classified whether it is malignant or not. The proposed algorithm is applied to the Korean digital mammogram. Experimental result showed that the proposed method would outperform conventional method using ANN (artificial neural networks).

Keywords

  • Mammography
  • Microcalcification
  • SVM

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-36841-0_586
  • Chapter length: 4 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   1,109.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-36841-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   1,399.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yunhee Choi, Yeon Ju Kim, Hai-Rim Shin, Keun-Young Yoo. (2005) Long-term prediction of female breast cancer mortality in Korea, Asian Pacific J Cancer Prev., 2005,vol.6, pp 16–21

    Google Scholar 

  2. P. C. Johns and M. J. Yaffe (1987) X-ray characterization of normal and neoplastic breast tissues, Physics in Medicine and Biology, vol.32, No.6, 1987, pp 675

    CrossRef  Google Scholar 

  3. Johns, P. C., Yaffe, M. J. (1987) X-ray characterization of normal and neoplastic breast tissues, Physics in Medicine and Biology.1987 vol.32, No.6 pp.675–695

    CrossRef  Google Scholar 

  4. William E. Polakowski, Donald A. Cournoyer, Steven K. Rogers, Martin P. DeSimio, Dennis W. Ruck, Jeffrey W. Hoffmeister, Richard A. Raines (1997) Computer-Aided Breast Cancer Detection and Diagnosis of Masses Using Difference of Gaussians and Derivative-Based Feature Saliency, IEEE Trans. Medical Imaging vol.16, No.6

    Google Scholar 

  5. ACR National Mammography Database(NMD) at http://www.acr.org/

    Google Scholar 

  6. Hokyung Kang, Yong Man Ro, Sung Min Kim (2005) A Microcalcification Detection Using Adaptive Contrast Enhancement on Wavelet Transform and Neural Network, IEICE Trans. on Information & Systems 2005 vol.E89-D, No.3, pp.1280–1287

    CrossRef  Google Scholar 

  7. V. N. Vapnik (1995) The Nature of Statistical Learning Theory, Springer

    Google Scholar 

  8. El-Naqa. I., Yongyi Yang, Wernick. M.N., Galatsanos. N.P., Nishikawa. R.M. (2002) A support vector machine approach for detection of microcalcification, IEEE Trans. Medical Imaging, vol. 21, pp.1552–1563

    CrossRef  Google Scholar 

  9. Armando Bazzani, Alessandro Bevilacqua, Dante Bollini, Rosa Brancaccio, Renato Campanini, Nico Lanconelli, Alessandro Riccardi, Davide Romani (2001) An SVM classifier to separate false signals from microcalcifications in digital mammogram, Phys.Med. Biol.,2001, 46:1651–1663

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Man Ro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2007 International Federation for Medical and Biological Engineering

About this paper

Cite this paper

Kwon, J.W., Kang, H., Ro, Y.M., Kim, S.M. (2007). A Microcalcification Detection Using Multi-Layer Support Vector Machine in Korean Digital Mammogram. In: Magjarevic, R., Nagel, J.H. (eds) World Congress on Medical Physics and Biomedical Engineering 2006. IFMBE Proceedings, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36841-0_586

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36841-0_586

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36839-7

  • Online ISBN: 978-3-540-36841-0

  • eBook Packages: EngineeringEngineering (R0)