Skip to main content

Function of Genetic Material: Assembly Factors of the Photosynthetic Machinery in Cyanobacteria

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adir N, Shochat S, Ohad I (1990) Light-dependent D1 protein synthesis and translocation is regulated by reaction center II. Reaction center II serves as an acceptor for the D1 precursor. J Biol Chem 265:12563–12568.

    PubMed  CAS  Google Scholar 

  • Amann K, Lezhneva L, Wanner G, Herrmann RG, Meurer J (2004) Accumulation of photosystem 1, a member of a novel gene family, is required for accumulation of [4Fe-4S] cluster-containing chloroplast complexes and antenna proteins. Plant Cell 16:3084–3097.

    Article  PubMed  CAS  Google Scholar 

  • Anbudurai PR, Mor TS, Ohad I, Shestakov SV, Pakrasi HB (1994) The ctpA gene encodes the C–terminal processing protease for the D1 protein of the photosystem II reaction center complex. Proc Natl Acad Sci USA 91:8082–8086.

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM, Park YI, Chow WS (1997) Photoinactivation and photoprotection of photosystem II in nature. Physiologia Plantarum 100:214–223.

    Article  CAS  Google Scholar 

  • Aro EM, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843.

    PubMed  CAS  Google Scholar 

  • Aro EM, Suorsa M, Rokka A, Allahverdiyeva Y, Paakkarinen V, Saleem A, Battchikova N, Rintamaki E (2004) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356.

    Article  PubMed  Google Scholar 

  • Aseeva E, Ossenbuhl F, Eichacker LA, Wanner G, Soll J, Vothknecht UC (2004) Complex formation of Vipp1 depends on its alpha-helical PspA-like domain. J Biol Chem 279:35535–35541.

    Article  PubMed  CAS  Google Scholar 

  • Bartsevich VV, Pakrasi HB (1997) Molecular identification of a novel protein that regulates biogenesis of photosystem I, a membrane protein complex. J Biol Chem 272:6382–6387.

    Article  PubMed  CAS  Google Scholar 

  • Baymann F, Brugna M, Muhlenhoff U, Nitschke W (2001) Daddy, where did (PS) I come from? Biochim Biophys Acta 1507:291–310.

    Article  PubMed  CAS  Google Scholar 

  • Ben–Shem A, Frolow F, Nelson N (2003) Crystal structure of plant photosystem I. Nature 426:630–635.

    Article  PubMed  Google Scholar 

  • Bergantino E, Brunetta A, Touloupakis E, Segalla A, Szabo I, Giacometti GM (2003) Role of the PSII-H subunit in photoprotection:novel aspects of D1 turnover in Synechocystis 6803. J Biol Chem 278:41820–41829.

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F, Barber J (2001) Oxyphotobacteria. Antenna ring around photosystem I. Nature 413:590.

    Article  PubMed  CAS  Google Scholar 

  • Blatch GL, Lässle M (1999) The tetratricopeptide repeat:a structural motif mediating protein-protein interactions. Bioessays 21:932–939.

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakushevska AE, Piotrowski M, Keegstra W, Berry S, Michel KP, Pistorius EK, Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412:745–748.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix JD (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau E, Nickelsen J, Lemaire SD, Ossenbühl F, Rochaix JD (2000) The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. EMBO J 19:3366–3376.

    Article  PubMed  CAS  Google Scholar 

  • Chitnis VP, Chitnis PR (1993) PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 336:330–334.

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea LD, Regan L (2003) TPR proteins:the versatile helix. Trends Biochem Sci 28:655–662.

    Article  PubMed  Google Scholar 

  • de Weerd FL, van Stokkum IH, van Amerongen H, Dekker JP, van Grondelle R (2002) Pathways for energy transfer in the core light-harvesting complexes CP43 and CP47 of photosystem II. Biophys J 82:1586–1597.

    Article  PubMed  Google Scholar 

  • Di Cola A, Klostermann E, Robinson C (2005) The complexity of pathways for protein import into thylakoids:it’s not easy being green. Biochem Soc Trans 33:1024–1027.

    Article  PubMed  Google Scholar 

  • Dietz KJ, Horling F, Konig J, Baier M (2002) The function of the chloroplast 2–cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53:1321–1329.

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Ries DF, Cohen BN, Metz JG (1988) COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. J Biol Chem 263:8972–8980.

    PubMed  CAS  Google Scholar 

  • Dühring U, Irrgang KD, Lunser K, Kehr J, Wilde A (2006) Analysis of photosynthetic complexes from a cyanobacterial ycf37 mutant. Biochim Biophys Acta 1757:3–11.

    Article  PubMed  Google Scholar 

  • Felder S, Meierhoff K, Sane AP, Meurer J, Driemel C, Plucken H, Klaff P, Stein B, Bechtold N, Westhoff P (2001) The nucleus-encoded HCF107 gene of Arabidopsis provides a link between intercistronic RNA processing and the accumulation of translation–competent psbH transcripts in chloroplasts. Plant Cell 13:2127–2141.

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen–evolving center. Science 303:1831–1838.

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Huang F, Nilsson F, Hagemann M, Norling B (2000) Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 267:5900–5907.

    Article  PubMed  CAS  Google Scholar 

  • Hankamer BD, Elderkin SL, Buck M, Nield J (2004) Organization of the AAA(+) adaptor protein PspA is an oligomeric ring. J Biol Chem 279:8862–8866.

    Article  PubMed  CAS  Google Scholar 

  • Haussuhl K, Andersson B, Adamska I (2001) A chloroplast DegP2 protease performs the primary cleavage of the photodamaged D1 protein in plant photosystem II. EMBO J 20:713–722.

    Article  PubMed  CAS  Google Scholar 

  • Ivleva NB, Shestakov SV, Pakrasi HB (2000) The carboxyl-terminal extension of the precursor D1 protein of photosystem II is required for optimal photosynthetic performance of the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 124:1403–1412.

    Article  PubMed  CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411:909–917.

    Article  PubMed  CAS  Google Scholar 

  • Kamata T, Hiramoto H, Morita N, Shen JR, Mann NH, Yamamoto Y (2005) Quality control of photosystem II:an FtsH protease plays an essential role in the turn-over of the reaction centre D1 protein in Synechocystis PCC 6803 under heat stress as well as light stress conditions. Photochem Photobiol Sci 4:983–990.

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N, Shen JR (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. Proc Natl Acad Sci USA 100:98–103.

    Article  PubMed  CAS  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012.

    Article  PubMed  CAS  Google Scholar 

  • Keren N, Liberton M, Pakrasi HB (2005) Photochemical competence of assembled photosystem II core complex in cyanobacterial plasma membrane. J Biol Chem 280:6548–6553.

    Article  PubMed  CAS  Google Scholar 

  • Kessler D, Papenbrock J (2005) Iron–sulfur cluster biosynthesis in photosynthetic organisms. Photosynth Res 86:391–407.

    Article  PubMed  CAS  Google Scholar 

  • Klinkert B, Ossenbühl F, Sikorski M, Berry S, Eichacker L, Nickelsen J (2004) PratA, a periplasmic tetratricopeptide repeat protein involved in biogenesis of photosystem II in Synechocystis sp. PCC 6803. J Biol Chem 279:44639–44644.

    Article  PubMed  CAS  Google Scholar 

  • Komenda J, Reisinger V, Müller BC, Dobáková M, Eichacker LA (2004) Accumulation of the D2 Protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem 279:48620–48629.

    Article  PubMed  CAS  Google Scholar 

  • Kroll D, Meierhoff K, Bechtold N, Kinoshita M, Westphal S, Vothknecht UC, Soll J, Westhoff P (2001) VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation. Proc Natl Acad Sci USA 98:4238–4242.

    Article  PubMed  CAS  Google Scholar 

  • Kruip J, Bald D, Boekema EJ, Rögner M (1994) Evidence for the existence of trimeric and monomeric Photosystem I complexes in thylakoid membranes. Photosynth Res 40:279–286.

    Article  CAS  Google Scholar 

  • Kurisu G, Zhang H, Smith JL, Cramer WA (2003) Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science 302:1009–1014.

    Article  PubMed  CAS  Google Scholar 

  • Kuvikova S, Tichy M, Komenda J (2005) A role of the C-terminal extension of the photosystem II D1 protein in sensitivity of the cyanobacterium Synechocystis PCC 6803 to photoinhibition. Photochem Photobiol Sci 4:1044–1048.

    Article  PubMed  CAS  Google Scholar 

  • Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe-4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–185.

    PubMed  CAS  Google Scholar 

  • Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, Andersson B (2000) The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. Plant Cell 12:419–431.

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete co-factor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438:1040–1044.

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251.

    Article  PubMed  CAS  Google Scholar 

  • Meskauskiene R, Nater M, Goslings D, Kessler F, op den Camp R, Apel K (2001) FLU:a negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 98:12826–12831.

    Article  PubMed  CAS  Google Scholar 

  • Meurer J, Plucken H, Kowallik KV, Westhoff P (1998) A nuclear–encoded protein of prokaryotic origin is essential for the stability of photosystem II in Arabidopsis thaliana. EMBO J 17:5286–5297.

    Article  PubMed  CAS  Google Scholar 

  • Mustardy L, Cunningham FX, Jr., Gantt E (1992) Photosynthetic membrane topography: quantitative in situ localization of photosystems I and II. Proc Natl Acad Sci USA 89:10021–10025.

    Article  PubMed  CAS  Google Scholar 

  • Naver H, Boudreau E, Rochaix JD (2001) Functional studies of Ycf3:its role in assembly of photosystem I and interactions with some of its subunits. Plant Cell 13:2731–2745.

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Ben-Shem A (2004) The complex architecture of oxygenic photosynthesis. Nat Rev Mol Cell Biol 5:971–982.

    Article  PubMed  CAS  Google Scholar 

  • Nickelsen J (2003) Molecular genetics of chloroplast biogenesis In:Esser K, Ulrich L (eds) Progress in botany genetics—physiology—systematics—ecology. Springer–Verlag, Berlin Heidelberg, pp 53–73.

    Google Scholar 

  • Nixon PJ, Barker M, Boehm M, de Vries R, Komenda J (2005) FtsH–mediated repair of the photosystem II complex in response to light stress. J Exp Bot 56:357–363.

    Article  PubMed  CAS  Google Scholar 

  • Nowaczyk M (2005) Untersuchungen zur Struktur, Funktion und Dynamik von Photosystem II aus dem thermophilen Cyanobakterium Thermosynechococcus elongatus, Dissertation, Ruhr-Universität Bochum.

    Google Scholar 

  • Park JM, Cho JH, Kang SG, Jang HJ, Pih KT, Piao HL, Cho MJ, Hwang I (1998) A dynamin–like protein in Arabidopsis thaliana is involved in biogenesis of thylakoid membranes. EMBO J 17:859–867.

    Article  PubMed  CAS  Google Scholar 

  • Pasch JC, Nickelsen J, Schunemann D (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl Microbiol Biotechnol 69:440–447.

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Van Hoewyk D, Ye H, Pilon-Smits EA (2006) Biogenesis of iron-sulfur cluster proteins in plastids. Genet Eng (NY) 27:101–117.

    Article  CAS  Google Scholar 

  • Plücken H, Muller B, Grohmann D, Westhoff P, Eichacker LA (2002) The HCF136 protein is essential for assembly of the photosystem II reaction center in Arabidopsis thaliana. FEBS Lett 532:85–90.

    Article  PubMed  Google Scholar 

  • Rochaix JD, Perron K, Dauvillee D, Laroche F, Takahashi Y, Goldschmidt-Clermont M (2004) Post–transcriptional steps involved in the assembly of photosystem I in Chlamydomonas. Biochem Soc Trans 32:567–570.

    Article  PubMed  CAS  Google Scholar 

  • Rögner M, Boekema EJ, Barber J (1996) How does photosystem 2 split water? The structural basis of efficient energy conversion. Trends Biochem Sci 21:44–49.

    PubMed  Google Scholar 

  • Rokka A, Suorsa M, Saleem A, Battchikova N, Aro EM (2005) Synthesis and assembly of thylakoid protein complexes. Multiple assembly steps of photosystem II. Biochem J 15:159–168.

    Google Scholar 

  • Roose JL, Pakrasi HB (2004) Evidence that D1 processing is required for manganese binding and extrinsic protein assembly into photosystem II. J Biol Chem 279:45417–45422.

    Article  PubMed  CAS  Google Scholar 

  • Ruf S, Kossel H, Bock R (1997) Targeted inactivation of a tobacco intron–containing open reading frame reveals a novel chloroplast-encoded photosystem I-related gene. J Cell Biol 139:95–102.

    Article  PubMed  CAS  Google Scholar 

  • Saenger W, Jordan P, Krauss N (2002) The assembly of protein subunits and cofactors in photosystem I. Curr Opin Struct Biol 12:244–254.

    Article  PubMed  CAS  Google Scholar 

  • Sane AP, Stein B, Westhoff P (2005) The nuclear gene HCF107 encodes a membrane-associated R-TPR (RNA tetratricopeptide repeat)-containing protein involved in expression of the plastidial psbH gene in Arabidopsis. Plant J 42:720–730.

    Article  PubMed  CAS  Google Scholar 

  • Sarcina M, Bouzovitis N, Mullineaux CW (2005) Mobilization of photosystem II induced by intense red light in the cyanobacterium Synechococcus sp PCC7942. Plant Cell 18:457–464.

    Article  PubMed  Google Scholar 

  • Schünemann D (2004) Structure and function of the chloroplast signal recognition particle. Curr Genet 44:295–304.

    Article  PubMed  Google Scholar 

  • Schwabe TM (2003) Analysis of the biogenesis and dynamics of the membrane protein complex photosystem I in cyanobacteria., Dissertation, Ruhr-Universität Bochum.

    Google Scholar 

  • Schwabe TM, Kruip J (2000) Biogenesis and assembly of photosystem I. Indian J Biochem Biophys 37:351–359.

    PubMed  CAS  Google Scholar 

  • Schwabe TM, Gloddek K, Schluesener D, Kruip J (2003) Purification of recombinant BtpA and Ycf3, proteins involved in membrane protein biogenesis in Synechocystis PCC 6803. J Chromatogr B Analyt Technol Biomed Life Sci 786:45–59.

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Antonkine ML, van der Est A, Vassiliev IR, Brettel K, Bittl R, Zech SG, Zhao J, Stehlik D, Bryant DA, Golbeck JH (2002a) Assembly of photosystem I. II. Rubredoxin is required for the in vivo assembly of F(X) in Synechococcus sp. PCC 7002 as shown by optical and EPR spectroscopy. J Biol Chem 277:20355–20366.

    Article  PubMed  CAS  Google Scholar 

  • Shen G, Zhao J, Reimer SK, Antonkine ML, Cai Q, Weiland SM, Golbeck JH, Bryant DA (2002b) Assembly of photosystem I. I. Inactivation of the rubA gene encoding a membrane–associated rubredoxin in the cyanobacterium Synechococcus sp. PCC 7002 causes a loss of photosystem I activity. J Biol Chem 277:20343–20354.

    Article  PubMed  CAS  Google Scholar 

  • Shestakov SV, Anbudurai PR, Stanbekova GE, Gadzhiev A, Lind LK, Pakrasi HB (1994) Molecular cloning and characterization of the ctpA gene encoding a carboxyl–terminal processing protease. Analysis of a spontaneous photosystem II–deficient mutant strain of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 269:19354–19359.

    PubMed  CAS  Google Scholar 

  • Shi LX, Schröder WP (2004) The low molecular mass subunits of the photosynthetic supracomplex, photosystem II. Biochim Biophys Acta 1608:75–96.

    Article  PubMed  CAS  Google Scholar 

  • Spence E, Sarcina M, Ray N, Moller SG, Mullineaux CW, Robinson C (2003) Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol Microbiol 48:1481–1489.

    Article  PubMed  CAS  Google Scholar 

  • Stagljar I, Korostensky C, Johnsson N, te Heesen S (1998) A genetic system based on split–ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci USA 95:5187–5192.

    Article  PubMed  CAS  Google Scholar 

  • Stöckel J, Oelmüller R (2004) A novel protein for photosystem I biogenesis. J Biol Chem 279:10243–10251.

    Article  PubMed  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6) f complex. Nature 426:413–418.

    Article  PubMed  CAS  Google Scholar 

  • Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ (2005a) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44:805–815.

    Article  PubMed  CAS  Google Scholar 

  • Summerfield TC, Winter RT, Eaton-Rye JJ (2005b) Investigation of a requirement for the PsbP-like protein in Synechocystis sp. PCC 6803. Photosynth Res 84:263–268.

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Vass I, Styring S (1991) Sequence analysis of the D1 and D2 reaction center proteins of photosystem II. Z Naturforsch [C] 46:765–776.

    CAS  Google Scholar 

  • Swiatek M, Regel RE, Meurer J, Wanner G, Pakrasi HB, Ohad I, Herrmann RG (2003) Effects of selective inactivation of individual genes for low–molecular–mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation:the psbEFLJoperon in Nicotiana tabacum. Mol Genet Genom 268:699–710.

    CAS  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175.

    Article  PubMed  CAS  Google Scholar 

  • Vaistij FE, Boudreau E, Lemaire SD, Goldschmidt-Clermont M, Rochaix JD (2000) Characterization of Mbb1, a nucleus-encoded tetratricopeptide-like repeat protein required for expression of the chloroplast psbB/psbT/psbH gene cluster in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 97:14813–14818.

    Article  PubMed  CAS  Google Scholar 

  • Vothknecht UC, Soll J (2002) Chloroplast quest:a journey from the cytosol into the chloroplast and beyond. Rev Physiol Biochem Pharmacol 145:181–222.

    Article  PubMed  CAS  Google Scholar 

  • Westphal S, Heins L, Soll J, Vothknecht UC (2001) Vipp1 deletion mutant of Synechocystis:a connection between bacterial phage shock and thylakoid biogenesis? Proc Natl Acad Sci USA 98:4243–4248.

    Article  PubMed  CAS  Google Scholar 

  • Wierenga RK (2001) The TIM-barrel fold:a versatile framework for efficient enzymes. FEBS Lett 492:193–198.

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Hartel H, Hubschmann T, Hoffmann P, Shestakov SV, Börner T (1995) Inactivation of a Synechocystis sp strain PCC 6803 gene with homology to conserved chloroplast open reading frame 184 increases the photosystem II-to-photosystem I ratio. Plant Cell 7:649–658.

    Article  PubMed  CAS  Google Scholar 

  • Wilde A, Lunser K, Ossenbühl F, Nickelsen J, Börner T (2001) Characterization of the cyanobacterial ycf37:mutation decreases the photosystem I content. Biochem J 357:211–216.

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Bauer CE (2002) Complex evolution of photosynthesis. Annu Rev Plant Biol 53:503–521.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Inagaki N, Satoh K (2001) Overexpression and characterization of carboxyl-terminal processing protease for precursor D1 protein:regulation of enzyme-substrate interaction by molecular environments. J Biol Chem 276:7518–7525.

    Article  PubMed  CAS  Google Scholar 

  • Yi L, Dalbey RE (2005) Oxa1/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (review). Mol Membr Biol 22:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Zak E, Pakrasi HB (2000) The BtpA protein stabilizes the reaction center proteins of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 at low temperature. Plant Physiol 123:215–222.

    Article  PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Andersson B, Pakrasi HB (1999) Subcellular localization of the BtpA protein in the cyanobacterium Synechocystis sp. PCC 6803. Eur J Biochem 261:311–316.

    Article  PubMed  CAS  Google Scholar 

  • Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448.

    Article  PubMed  CAS  Google Scholar 

  • Zerges W (2000) Translation in chloroplasts. Biochimie 82:583–601.

    Article  PubMed  CAS  Google Scholar 

  • Zerges W, Rochaix JD (1998) Low density membranes are associated with RNA-binding proteins and thylakoids in the chloroplast of Chlamydomonas reinhardtii. J Cell Biol 140:101–110.

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 409:739–743.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nickelsen, J., Nowaczyk, M.M., Klinkert, B. (2007). Function of Genetic Material: Assembly Factors of the Photosynthetic Machinery in Cyanobacteria. In: Esser, K., Löttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36832-8_3

Download citation

Publish with us

Policies and ethics