Skip to main content

Living in Day-Night Cycles–Specific Diel Leaf Growth Patterns and the Circadian Control of Photomorphogenesis

  • Chapter
Book cover Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 68))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acevedo E, Fereres E, Hsiao TC, Henderson DW (1979) Diurnal growth trends, water potential and osmotic adjustment of maize and Sorghum leaves in the field. Plant Physiol 64:476–480.

    Article  PubMed  Google Scholar 

  • Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30:851–861.

    Article  PubMed  CAS  Google Scholar 

  • Ainsworth EA, Walter A, Schurr U (2005) Glycine max leaflets lack a base-tip gradient in growth rate. J Plant Res 118:343–346.

    Article  PubMed  Google Scholar 

  • Alabadí D, Oyama T, Yanovsky MJ, Harmon FG, Más P, Kay SA (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293:880–883.

    Article  PubMed  Google Scholar 

  • Alabadí D, Yanovsky MJ, Más P, Harmer SL, Kay SA (2002) Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Curr Biol 12:757–761.

    Article  PubMed  Google Scholar 

  • Allen JF, Nilsson A (1997) Redox signalling and the structural basis of regulation of photosynthesis by protein phosphorylation. Physiol Plant 100:863–868.

    Article  CAS  Google Scholar 

  • Aphalo PJ, Ballaré CL, Scopel AL (1999) Plant-plant signalling, the shade-avoidance response and competition. J Exp Bot 50:1629–1634.

    Article  CAS  Google Scholar 

  • Avery GS (1933) Structure and development of tobacco leaves. Am J Bot 20:565–592.

    Article  Google Scholar 

  • Beemster GTS, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inzé D, Vuylsteke M (2005) Genome-wide analysis of gene expression profiles associated with cell cycle transition in growing organs of Arabidopsis. Plant Physiol 138:734–743.

    Article  PubMed  CAS  Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopaedia of plant physiology, vol 12A. Physiological plant ecology I. Responses to the physical environment. Springer-Verlag, Berlin, Heidelberg, New York, pp 96–117.

    Google Scholar 

  • Bolige A, Hagiwara S, Zhang Y, Goto K (2005a) Circadian G2 arrest as related to circadian gating of cell proliferation growth in Euglena. Plant Cell Physiol 46:931–936.

    Article  PubMed  CAS  Google Scholar 

  • Bolige A, Kiyota M, Goto K (2005b) Circadian rhythms of resistance to UV-C and UV-B radiation in Euglena as related to “escape from light” and “resistance to light”. J Photochem Photobiol B: Biol 81:43–54.

    Article  CAS  Google Scholar 

  • Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12:2383–2394.

    Article  PubMed  CAS  Google Scholar 

  • Boyer JS (1968) Relationship of water potential to growth of leaves. Plant Physiol 43:1056–1062.

    Article  PubMed  Google Scholar 

  • Breyne P, Dreesen R, Vandepoele K, De Veylder L, Van Breusegem F, Callewaert L, Rombauts S, Raes J, Cannoot B, Engler G, Inzé D, Zabeau M (2002) Transcriptome analysis during cell division in plants. Proc Natl Acad Sci USA 99:14825–14830.

    Article  PubMed  CAS  Google Scholar 

  • Bunce JA (1977) Leaf elongation in relation to leaf water potential in soybean. J Exp Bot 28:156–161.

    Article  Google Scholar 

  • Bünning E (1952) Über den Tagesrhythmus der Mitosehäufigkeit in Pflanzen. Z Bot 40:193–199.

    Google Scholar 

  • Carabelli M, Morelli G, Whitelam G, Ruberti I (1996) Twilight-zone and canopy shade induction of the Athb-2 homeobox gene in green plants. Proc Natl Acad Sci USA 93:3530–3535.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay S, Ang L-H, Puente P, Deng X-W, Wei N (1998) Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10: 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Christ RA (1978) The elongation rate of wheat leaves. I. The elongation rates during night and day. J Exp Bot 29:603–610.

    Article  Google Scholar 

  • Cluis CP, Mouchel CF, Hardtke CS (2004) The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 38:332–347.

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2000) Expansive growth of plant cell walls. Plant Physiol Biochem 38:109–124.

    Article  PubMed  CAS  Google Scholar 

  • Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315.

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Navarrete MH, Canovas JL (1985) The effect of partial protein synthesis inhibition on cell proliferation in higher plants. J Cell Sci 76:97–104.

    PubMed  CAS  Google Scholar 

  • Davies WJ, van Volkenburgh E (1983) The influence of water deficit on the factors controling the daily pattern of growth of Phaseolus trifoliates. J Exp Bot 34:987–999.

    Article  Google Scholar 

  • Demmig-Adams B, Adams WW III (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626.

    Article  CAS  Google Scholar 

  • den Boer BGW, Murray JAH (2000) Triggering the cell cycle in plants. Trends Cell Biol 10:245–250.

    Article  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629.

    Article  PubMed  CAS  Google Scholar 

  • Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309:630–633.

    Article  PubMed  CAS  Google Scholar 

  • Dowson-Day MJ, Millar AJ (1999) Circadian dysfunction causes aberrant hypocotyl elongation patterns in Arabidopsis. Plant J 17:63–71.

    Article  PubMed  CAS  Google Scholar 

  • Durand JL, Onillon B, Schnyder H, Rademacher I (1995) Drought effects on cellular and spatial parameters of leaf growth in tall fescue. J Exp Bot 46:1147–1155.

    Article  CAS  Google Scholar 

  • Evans JR, Poorter H (2001) Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ 24:755–767.

    Article  CAS  Google Scholar 

  • Folta KM, Lieg EJ, Durham T, Spalding EP (2003) Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133:1464–1470.

    Article  PubMed  CAS  Google Scholar 

  • Frak E, Le Roux X, Millard P, Adam B, Dreyer E, Escuit C, Sinoquet H, Vandame M, Variet-Grancher C (2002) Spatial distribution of leaf nitrogen and photosynthetic capacity within the foliage of individual trees: disentangling the effects of local light quality, leaf irradiance, and transpiration. J Exp Bot 53:2207–2216.

    Article  PubMed  CAS  Google Scholar 

  • Frankhauser C, Staiger D (2002) Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216:1–16.

    Article  CAS  Google Scholar 

  • Franklin KA, Whitelam GC (2005) Phytochromes and shade-avoidance responses in plants. Ann Bot 96:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Johnson CH (1995) Is the cell division cycle gated by a circadian clock? The case of Chlamydomonas reinhardtii. J Cell Biol 129:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  • Gouws LM, Osmond CB, Schurr U, Walter A (2005) Distinctive diel growth cycles in leaves and cladodes of CAM plants: differences from C3 plants and putative interactions with substrate availability, turgor and cytoplasmic pH. Funct Plant Biol 32:421–428.

    Article  CAS  Google Scholar 

  • Green RM, Tingay S, Wang ZY, Tobin EM (2002) Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol 129:576–584.

    Article  PubMed  CAS  Google Scholar 

  • Green RM, Tobin EM (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc Natl Acad Sci USA 96:4176–4179.

    Article  PubMed  CAS  Google Scholar 

  • Hagiwara S, Bolige A, Zhang Y, Takahashi M, Yamagishi A, Goto K (2002) Circadian gating of photoinduction of commitment to cell-cycle transitions in relation to photoperiodic control of cell reproduction in Euglena. Photochem Photobiol 76:105–115.

    Article  PubMed  CAS  Google Scholar 

  • Halliday KJ, Hudson M, Ni M, Quail PH (1999) poc1: an Arabidopsis mutant perturbed in phytochrome signaling because of a T DNA insertion in the promoter of PIF3, a gene encoding a phytochrome-interacting bHLH protein. Proc Natl Acad Sci USA 96:5832–5837.

    Article  PubMed  CAS  Google Scholar 

  • Harmer SL, Hogenesch JB, Straume M, Chang H-S, Han B, Zhu T, Wang X, Kreps JA, Kay SA (2000) Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290:2110–2113.

    Article  PubMed  CAS  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19.

    Article  PubMed  CAS  Google Scholar 

  • Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001) An Arabidopsis circadian clock component interacts with both CRY1 and phyB. Nature 410:487–490.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen P, Tyers M, Warner JR (2004) Forging the factory: ribosome synthesis and growth control in budding yeast. In: Hall MN, Raff M, Thomas G (eds) Cell growth: control of cell size. Cold Spring Harbor Laboratory Press, New York, pp 329–370.

    Google Scholar 

  • Kim W-Y, Hicks KA, Somers DE (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139:1557–1569.

    Article  PubMed  CAS  Google Scholar 

  • Kozma-Bognár L, Hall A, Ádam É, Thain SC, Nagy F, Millar AJ (1999) The circadian clock controls the expression pattern of the circadian input photoreceptor, phytochrome B. Proc Natl Acad Sci USA 96:14652–14657.

    Article  Google Scholar 

  • Lai I-L, Scharr H, Chavarría-Krauser A, Küsters R, Wu J-T, Chou C-H, Schurr U, Walter A (2005) Leaf growth dynamics of two congener gymnosperm tree species reflect the heterogeneity of light intensities given in their natural ecological niche. Plant Cell Environ 28:1496–1505.

    Article  Google Scholar 

  • Lecharny A, Schwall M, Wagner E (1985) Stem extension rate in light-grown plants. Plant Physiol 79:625–629.

    Article  PubMed  Google Scholar 

  • Liscum E, Hodgson DW, Campbell TJ (2003) Blue light signaling through the cryptochromes and phototropins. So that’s what the blues is all about. Plant Physiol 133:1429–1436.

    Article  PubMed  CAS  Google Scholar 

  • Liu XL, Covington MF, Frankhauser C, Chory J, Wagner DR (2001) ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13:1293–1304.

    Article  PubMed  CAS  Google Scholar 

  • Lüttge U (2003) Circadian rhythmicity: Is the “Biological Clock” hardware or software? Prog Bot 64:277–319.

    Google Scholar 

  • Ma L, Gao Y, Qu L, Chen Z, Li J, Zhao H, Deng XW (2002) Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell 14:2383–2398.

    Article  PubMed  CAS  Google Scholar 

  • Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T (2002) The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: characterization with APRR1-overexpressing plants. Plant Cell Physiol 43:58–59.

    Article  PubMed  CAS  Google Scholar 

  • Maksymowych R (1973) Analysis of leaf development. Cambridge University Press, Cambridge.

    Google Scholar 

  • Martínez-García JF, Huq E, Quail PH (2000) Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859–863.

    Article  PubMed  Google Scholar 

  • Más P, Alabadí D, Yanovsky MJ, Oyama T, Kay SA (2003a) Dual Role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis. Plant Cell 15:223–236.

    Article  PubMed  CAS  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003b) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara S, Hurry V, Druart N, Benedict C, Janzik I, Chavarría-Krauser A, Walter A, Schurr U (2006) Nocturnal changes in leaf growth of Populus deltoids are controlled by cytoplasmic growth. Planta 223:1315–1328.

    Article  PubMed  CAS  Google Scholar 

  • Matt P, Schurr U, Klein D, Krapp A, Stitt M (1998) Growth of tobacco in short-day conditions leads to high starch, low sugars, altered diurnal changes in the Nia transcript and low nitrate reductase activity, and inhibition of amino acid synthesis. Planta 207:27–41.

    Article  PubMed  CAS  Google Scholar 

  • McClung CR (2001) Circadian rhythms in plants. Annu Rev Plant Physiol Plant Mol Biol 52:139–162.

    Article  PubMed  CAS  Google Scholar 

  • McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signalling to the circadian clock. Nature 408:716–720.

    Article  PubMed  CAS  Google Scholar 

  • Menges M, Hennig L, Gruissem W, Murray JAH (2002) Cell cycle-regulated gene expression in Arabidopsis. J Biol Chem 277:41987–42002.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ (2004) Input signals to the plant circadian clock. J Exp Bot 55:277–283.

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Kay SA (1996) Integration of circadian and phototransduction pathways in the network controlling CAB gene transcription in Arabidopsis. Proc Natl Acad Sci USA 93:15491–15496.

    Article  PubMed  CAS  Google Scholar 

  • Misquitta RW, Herrin DL (2005) Circadian regulation of chloroplast gene transcription: A review. Plant Tissue Cult 15:83–101.

    Google Scholar 

  • Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev Cell 2:629–641.

    Article  PubMed  CAS  Google Scholar 

  • Morelli G, Ruberti I (2000) Shade avoidance responses. Driving auxin along lateral routes. Plant Physiol 122:621–626.

    CAS  Google Scholar 

  • Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci USA 93:10183–10188.

    Article  PubMed  CAS  Google Scholar 

  • Nagatani A (2004) Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol 7:708–711.

    Article  PubMed  CAS  Google Scholar 

  • Neff MM, Frankhauser C, Chory J (2000) Light: an indicator of time and place. Genes Dev 14:257–271.

    PubMed  CAS  Google Scholar 

  • Ni M, Tepperman JM, Quail PH (1999) Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light. Nature 400:781–784.

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Kull O, Tenhunen JD (2004) Within canopy variation in the rate of development of photosynthetic capacity is proportional to integrated quantum flux density in temperate deciduous trees. Plant Cell Environ 27:293–313.

    Article  CAS  Google Scholar 

  • Nikaido SS, Johnson CH (2000) Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol 71:758–765.

    Article  PubMed  CAS  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359.

    Article  PubMed  CAS  Google Scholar 

  • Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Target destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466.

    Article  PubMed  CAS  Google Scholar 

  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH (1998) Resonating circadian clocks enhance fitness in cyanobacteria. Proc Natl Acad Sci USA 95:8660–8664.

    Article  PubMed  CAS  Google Scholar 

  • Oyama T, Shimura Y, Okada K (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11:2983–2995.

    Article  PubMed  CAS  Google Scholar 

  • Paietta J (1982) Photooxidation and the evolution of circadian rhythmicity. J Theor Biol 97:77–82.

    Article  PubMed  CAS  Google Scholar 

  • Parks BM, Cho MH, Spalding EP (1998) Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings. Plant Physiol 118:609–615.

    Article  PubMed  CAS  Google Scholar 

  • Pepper AE, Corbett RW, Kang N (2002) Natural variation in Arabidopsis seedling photomorphogenesis reveals a likely role for TED1 in phytochrome signalling. Plant Cell Environ 25:591–600.

    Article  CAS  Google Scholar 

  • Pigliucci M (1998) Developmental phenotypic plasticity: where internal programming meets the external environment. Curr Opin Plant Biol 1:87–91.

    Article  PubMed  CAS  Google Scholar 

  • Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:17–54.

    Article  Google Scholar 

  • Price LE, Bacon MA, Young PC, Davies WJ (2001) High-resolution analysis of tomato leaf elongation: the application of novel time-series analysis techniques. J Exp Bot 52:1925–1932.

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002a) Photosensory perception and signalling in plant cells: new paradigms? Curr Opin Cell Biol 14:180–188.

    Article  PubMed  CAS  Google Scholar 

  • Quail PH (2002b) Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol 3:85–93.

    Article  PubMed  CAS  Google Scholar 

  • Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD, Campbell MM (2005) Light, the circadian clock, and sugar perception in the control of lignin biosynthesis. J Exp Bot 416:1651–1663.

    Article  CAS  Google Scholar 

  • Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003) The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant Cell Environ 26:1343–1356.

    Article  Google Scholar 

  • Salter MG, Franklin KA, Whitelam GC (2003) Gating of the rapid shade-avoidance response by the circadian clock in plants. Nature 426:680–683.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E (2001) Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. Plant Cell 13:113–123.

    Article  PubMed  CAS  Google Scholar 

  • Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93:1219–1229.

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Schölkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506.

    Article  PubMed  CAS  Google Scholar 

  • Schmundt D, Stitt M, Jähne B, Schurr U (1998) Quantitative analysis of the local rates of growth of dicot leaves at a high temporal and spatial resolution, using image sequence analysis. Plant J 16:505–514.

    Article  Google Scholar 

  • Schultz TF, Kay SA (2003) Circadian clocks in daily and seasonal control of development. Science 301:326–328.

    Article  PubMed  CAS  Google Scholar 

  • Schurr U, Heckenberger U, Herdel K, Walter A, Feil R (2000) Leaf development in Ricinus communis during drought stress: dynamics of growth processes, of cellular structure and of sink-source transition. J Exp Bot 51: 1515–1529.

    Article  PubMed  CAS  Google Scholar 

  • Schurr U, Walter A, Rascher U (2006) Functional dynamics of plant growth and photosynthesis—from steady-state to dynamics—from homogeneity to heterogeneity. Plant Cell Environ 29:340–352.

    Article  PubMed  CAS  Google Scholar 

  • Schwechheimer C, Serino G, Callis J, Crosby WL, Lyapina S, Deshaies RJ, Gray WM, Estelle M, Deng X-W (2001) Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIR1 in mediating auxin response. Science 292:1379–1382.

    Article  PubMed  CAS  Google Scholar 

  • Seneweera SP, Basra AS, Barlow EW, Conroy JP (1995) Diurnal regulation of leaf blade elongation in rice by CO2. Plant Physiol 108:1471–1477.

    PubMed  CAS  Google Scholar 

  • Shackel KA, Matthews MA, Morrison JC (1987) Dynamic relation between expansion and cellular turgor in growing grape (Vitis vinifera L.) leaves. Plant Physiol 84:1166–1171.

    Article  PubMed  Google Scholar 

  • Smith H (1995) Physiological and ecological function within the phytochrome family. Annu Rev Plant Physiol Plant Mol Biol 46:289–315.

    Article  CAS  Google Scholar 

  • Smith H (2000) Phytochromes and light signal perception by plants—an emerging synthesis. Nature 407:585–591.

    Article  PubMed  CAS  Google Scholar 

  • Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM (2004) Diurnal changes in the transcriotome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136:1–13.

    Article  Google Scholar 

  • Somers DE (1999) The physiology and molecular bases of the plant circadian clock. Plant Physiol 121:9–19.

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Devlin PF, Kay SA (1998a) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490.

    Article  PubMed  CAS  Google Scholar 

  • Somers DE, Webb AAR, Pearson M, Kay SA (1998b) The short-period mutant, toc1–1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125:485–494.

    PubMed  CAS  Google Scholar 

  • Staiger D (2002) Circadian rhythms in Arabidopsis: time for nuclear proteins. Planta 214:334–344.

    Article  PubMed  CAS  Google Scholar 

  • Stals H, Inzé D (2001) When plant cells decide to divide. Trends Plant Sci 6:359–364.

    Article  PubMed  CAS  Google Scholar 

  • Steindler C, Matteucci A, Sessa G, Weimar T, Ohgishi M, Aoyama T, Morelli G, Ruberti I (1999) Shade avoidance responses are mediated by the ATHB-2 HD-Zip protein, a negative regulator of gene expression. Development 126:4235–4245.

    PubMed  CAS  Google Scholar 

  • Sterky F, Bhalerao RR, Unneberg P, Segerman B, Nilsson P, Brunner AM, Charbonnel-Campaa L, Jonsson-Lindvall J, Tandre K, Strauss SH, Sundberg B, Gustafsson P, Uhlén M, Bhalerao RP, Nilsson O, Sandberg G, Karlsson J, Lundeberg J, Jansson S (2004) A Populus EST resource for plant functional genomics. Proc Natl Acad Sci USA 101:13951–13956.

    Article  PubMed  Google Scholar 

  • Tanaka S-I, Nakamura S, Mochizuki N, Nagatani A (2002) Phytochrome in cotyledons regulates the expression of genes in the hypocotyl through auxin-dependent and–independent pathways. Plant Cell Physiol 43:1171–1181.

    Article  PubMed  CAS  Google Scholar 

  • Taylor G, Davies WJ (1985) The control of leaf growth of Betula and Acer by photoenvironment. New Phytol 101:259–268.

    Article  Google Scholar 

  • Taylor G, Davies WJ (1986) Leaf growth of Betula and Acer in simulated shade light. Oecologia 69:589–593.

    Article  Google Scholar 

  • Terashima I, Hikosaka K (1995) Comparative ecophysiology of leaf and canopy photosynthesis. Plant Cell Environ 18:1111–1128.

    Article  Google Scholar 

  • Terashima I, Hanba YT, Tazoe Y, Vyas P, Yano S (2006) Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J Exp Bot 57:343–354.

    Article  PubMed  CAS  Google Scholar 

  • Tóth R, Kevei É, Hall A, Millar AJ, Nagy F, Kozma-Bognár L (2001) Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol 127:1607–1616.

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H (2002) The leaf index: heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion. Plant Cell Physiol 43:372–378.

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya H (2003) Organ shape and size: a lesson from studies of leaf morphogenesis. Curr Opin Plant Biol 6:57–62.

    Article  PubMed  Google Scholar 

  • Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221:891–903.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbussche F, Pierik R, Millenaar FF, Voesenek LACJ, Van Der Straeten D (2005) Reaching out of the shade. Curr Opin Plant Biol 8:462–468.

    Article  PubMed  CAS  Google Scholar 

  • Van Volkenburgh E (1999) Leaf expansion—an integrating plant behaviour. Plant Cell Environ 22:1463–1473.

    Article  Google Scholar 

  • Van Volkenburgh E, Cleland RE (1981) Control of light-induced bean leaf expansion: role of osmotic potential, wall yield stress, and hydraulic conductivity. Planta 153:572–577.

    Article  Google Scholar 

  • Walter A, Schurr U (2000) Spatio-temporal variation of leaf growth, development and function. In: Marshall B, Roberts JA (eds) Leaf development and canopy growth. Sheffield Academic Press, Sheffield, pp 96–117.

    Google Scholar 

  • Walter A, Schurr U (2005) Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann Bot 95:891–900.

    Article  PubMed  Google Scholar 

  • Walter A, Feil R, Schurr U (2002a) Restriction of nyctinastic movements and application of tensile forces to leaves affects diurnal patterns of expansion growth. Funct Plant Biol 29:1247–1258.

    Article  Google Scholar 

  • Walter A, Spies H, Terjung S, Küsters R, Kirchgeaner N, Schurr U (2002b) Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. J Exp Bot 53:689–698.

    Article  PubMed  CAS  Google Scholar 

  • Walter A, Christ MM, Barron-Gafford GA, Grieve KA, Murthy R, Rascher U (2005) The effect of elevated CO2 on diel leaf growth cycle, leaf carbohydrate content and canopy growth performance of Populus deltoids. Global Change Biol 11:1207–1219.

    Article  Google Scholar 

  • Wang Z-Y, Tobin EM (1998) Constitutive expression of the Circadian clock associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207–1217.

    Article  PubMed  CAS  Google Scholar 

  • Wang Z-Y, Kenigsbuch F, Sun L, Harel E, Ong MS, Tobin EM (1997) A myb-related transcription factor is involved in the phytochrome regulation of an Arabidopsis Lhcb gene. Plant Cell 9:491–507.

    Article  PubMed  CAS  Google Scholar 

  • Watts WR (1974) Leaf extension in Zea mays. J Exp Bot 25:1085–1096.

    Article  Google Scholar 

  • Wollman F-A (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Matsubara, S., Walter, A. (2007). Living in Day-Night Cycles–Specific Diel Leaf Growth Patterns and the Circadian Control of Photomorphogenesis. In: Esser, K., Löttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36832-8_13

Download citation

Publish with us

Policies and ethics