Skip to main content

Nanoscale Friction and Ultrasonics

  • Chapter

Part of the book series: NanoScience and Technology ((NANO))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See, e. g. Review on ultrasonic machining. T.B. Thoe, D.K. Aspinwall, and M.L.H. Wise, Int. J. Mach. Tools Manufact. 38 (1998) 239 and Ref. therein.

    Article  Google Scholar 

  2. See, e. g. Acoustics of friction A. Akay, J. Acoust. Soc. Am. 111 (2002) 1525 and Ref. therein.

    Article  PubMed  ADS  CAS  Google Scholar 

  3. See, e. g. K. Dransfeld, Generation of ultrasonic waves in sliding friction, Chap. 7 in Nanoscience: Friction and Rheology on the Nanometer Scale, ed. E. Meyer, R.M. Overney, K. Dransfeld, and T. Gyalong, World Scientific (1998) and refs. therein; this chapter and refs. therein.

    Google Scholar 

  4. Atomic scale friction of a tungsten tip on a graphite surface, C.M. Mate, G.M. McClelland, R. Erlandsson, and S. Chiang, Phys. Rev. Lett. 59 (1987) 942.

    Article  ADS  Google Scholar 

  5. Simultaneous measurement of lateral and normal forces with an optical-beam-deflection atomic force microscope, G. Meyer and N. Amer, Appl. Phys. Lett. 57 (1990) 2089.

    Article  ADS  CAS  Google Scholar 

  6. Detection of Surface Acoustic Waves by Scanning Force Microscopy, W. Rohrbeck and E. Chilla, Phys. Stat. Sol. (a) 131 (1992) 69.

    Article  Google Scholar 

  7. Nonlinear detection of ultrasonic vibrations in an Atomic Force Microscope, O. Kolosov and K. Yamanaka Jpn. J. Appl. Phys. 32 (1993) L1095.

    Article  ADS  CAS  Google Scholar 

  8. Scanning microdeformation microscopy, B. Cretin and F. Sthal, Appl. Phys. Lett. 62 (1993) 829.

    Article  ADS  Google Scholar 

  9. Ultrasonic Force Microscopy for nanometer resolution subsurface imaging, K. Yamanaka, H. Ogiso, and O. Kolosov, Appl. Phys. Lett. 64 (1994) 178.

    Article  ADS  CAS  Google Scholar 

  10. Acoustic Microscopy by Atomic Force Microscopy, U. Rabe and W. Arnold, Appl. Phys. Lett. 64 (1994) 1493.

    Article  ADS  Google Scholar 

  11. Scanning acoustic force microscopy measurements in grating-like electrodes, T. Hesjedal, E. Chilla and H.-J. Froehlich, Appl. Phys. A 61 (1995) 237.

    Article  ADS  Google Scholar 

  12. Nanosubharmonics: the dynamics of small nonlinear contacts, N.A. Burnham, A.J. Kulik, G. Gremaud, and G.A.D. Briggs, Phys. Rev. Lett. 74 (1995) 5092.

    Article  PubMed  ADS  CAS  Google Scholar 

  13. Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiments, U. Rabe, K. Janser, and W. Arnold, Rev. Sci. Instr. 67 (1996) 3281.

    Article  ADS  CAS  Google Scholar 

  14. Scanning local-acceleration microscopy, N.A. Burnham, A.J. Kulik, G. Gremaud, P.J. Gallo, and F. Oulevey, J. Vac. Sci. Technol. B 14 (1996) 794.

    Article  CAS  Google Scholar 

  15. Ultrasonic Atomic Force Microscopy with overtone excitation of the cantilever, K. Yamanaka and S. Nakano, Jpn. J. Appl. Phys. 35 (1996) 3787.

    Article  CAS  Google Scholar 

  16. Contact imaging in the AFM using a high order flexural mode combined with a new sensor, S.C. Minne, S.R. Manalis, A. Atalar and C.F. Quate, Appl. Phys. Lett. 68 (1996) 1427.

    Article  ADS  CAS  Google Scholar 

  17. Scanning microdeformation microscopy in reflexion mode, P. Variac and B. Cretin, Appl. Phys. Lett. 68 (1996) 461.

    Article  ADS  Google Scholar 

  18. Nanoscale determination of phase velocity by scanning acoustic force microscopy, E. Chilla, T. Hesjedal, and H.-J. Fröhlich, Phys. Rev. B 55 (1997) 15852.

    Article  ADS  CAS  Google Scholar 

  19. Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy, F. Dinelli, M.R. Castell, D.A. Ritchie, N.J. Mason, G.A.D. Briggs, and O.V. Kolosov, Philos. Mag. A 80 (2000) 2299.

    Article  CAS  Google Scholar 

  20. Waveguide ultrasonic force microscopy at 60 MHz, K. Inagaki, O. Kolosov, A. Briggs, and O. Wright, Appl. Phys. Lett. 76 (2000) 1836.

    Article  ADS  CAS  Google Scholar 

  21. Heterodyne force microscopy of PMMA/rubber nanocomposites: nanomapping of viscoelastic response at ultrasonic frequencies, M.T. Cuberes, H.E. Assender, G.A.D. Briggs, and O.V. Kolosov, J. Phys. D.: Appl. Phys. 33 (2000) 2347.

    Article  ADS  CAS  Google Scholar 

  22. Nonlinear detection of ultrasonic vibration of AFM cantilevers in and out of contact with the sample, M.T. Cuberes, G.A.D. Briggs, and O. Kolosov, Nanotechnology 12 (2001) 53.

    Article  ADS  CAS  Google Scholar 

  23. Nanoscale imaging of buried structures via Scanning Near-Field Ultrasound Holography, G.S. Shekhawat and V.P. Dravid, Science 310 (2005) 89.

    Article  PubMed  ADS  CAS  Google Scholar 

  24. Local Elasticity and Lubrication Measurements Using Atomic Force and Friction Force Microscopy at Ultrasonic Frequencies, V. Scherer, B. Bhushan, U. Rabe, and W. Arnold, IEEE Trans. Magn. 33 (1997) 4077.

    Article  CAS  Google Scholar 

  25. Lateral Force Microscopy Using Acoustic Force Microscopy, V. Scherer, W. Arnold, and B. Bhushan, Surf. Interface Anal. 27 (1999) 578.

    Article  CAS  Google Scholar 

  26. On the nanoscale measurement of friction using atomic-force microscopy cantilever torsional resonances, M. Reinstädtler, U. Rabe, V. Scherer, U. Hartnann, A. Goldade, B. Bhushan and W. Arnold, Appl. Phys. Lett. 82 (2003) 2604.

    Article  ADS  CAS  Google Scholar 

  27. Investigating ultra-thin lubricant layers using resonant friction force microscopy, M. Reinstädtler, U. Rabe, A. Goldade, B. Bhushan and W. Arnold, Tribol. Int. 38 (2005) 533.

    Article  Google Scholar 

  28. Imaging of flexural and torsional resonance modes of atomic force microscopy cantilevers using optical interferometry, M. Reinstädtler, U. Rabe, V. Scherer, J.A. Turner, and W. Arnold, Surf. Sci. 532 (2003) 1152.

    Article  CAS  Google Scholar 

  29. Imaging using lateral bending modes of atomic force microscopy cantilevers, A. Caron, U. Rabe, M. Reinstätler, J.A. Turner, and W. Arnold, Appl. Phys. Lett. 85.

    Google Scholar 

  30. Quantitative elasticity evaluation by contact resonance in an atomic force microscope, K. Yamanaka and S. Nakano, Appl. Phys. A 66 (1998) S313.

    Article  ADS  CAS  Google Scholar 

  31. Mapping of lateral vibration of the tip in atomic force microscopy at the torsional resonance of the cantilever, T. Kawagishi, A. Kato, U. Hoshi, H. Kawakatsu, Ultramicroscopy 91 (2002) 37.

    Article  PubMed  CAS  Google Scholar 

  32. Imaging and measurement of elasticity and friction using the TRmode, M. Reinstädtler, T. Kasai, U. Rabe, B. Bhushan, and W. Arnold, J. Phys. D: Appl. Phys. 38 (2005) R269.

    Article  ADS  CAS  Google Scholar 

  33. Lateral-force measurements in dynamic force microscopy, O. Pfeiffer, R. Bennewitz, A. Baratoff, E. Meyer and P. Grütter, Phys. Rev. B 65 (2002) 161403.

    Article  ADS  CAS  Google Scholar 

  34. Determination of shear stiffness based on thermal noise analysis in atomic force microscopy: passive overtone microscopy, T. Drobek, R.W. Stark, and W.M. Heck, Phys. Rev B 64 (2001) 0454001.

    Article  CAS  Google Scholar 

  35. Transverse surface acoustic wave detection by scanning acoustic force microscopy, G. Bheme, T. Hesjedal, E. Chilla, and H.-J. Fröhlich, Appl. Phys. Lett. 73 (1998) 882.

    Article  ADS  Google Scholar 

  36. Simultaneous bimodal surface acoustic-wave velocity measurements by scanning acoustic force microscopy, G. Behme and T. Hesjedal, Appl. Phys. Lett. 77 (2000) 759.

    Article  ADS  CAS  Google Scholar 

  37. Recently, a novel AFM-based technique for studying nanoscale friction at velocities near to 10 nm s−1 has been implemented; see A new atomic force microscopy based technique for studying nanoscale friction at high sliding velocities, N.S. Tambe and B. Bhushan, J. Phys. D: Appl. Phys. 38 (2005) 764.

    Article  ADS  CAS  Google Scholar 

  38. Ultrasound induced lubricity in microscopic contact, F. Dinelli, S.K. Biswas, G.A.D. Briggs, and O.V. Kolosov, Appl. Phys. Lett. 71 (1997) 1177.

    Article  ADS  CAS  Google Scholar 

  39. Friction control in thin-film lubrication, J. Gao, W.D. Luedtke, and U. Landman, J. Phys. Chem. B 102 (1998) 5033.

    Article  CAS  Google Scholar 

  40. Coupling of normal and transverse motions during frictional sliding, M. Heuberger, C. Drummond, and J. Israelachvili, J. Phys. Chem. B 102 (1998) 5038.

    Article  CAS  Google Scholar 

  41. A. Socoliuc, E. Gnecco et al., submitted.

    Google Scholar 

  42. Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction, A. Socoliuc, R. Bennewitz, E. Gnecco, and E. Meyer, Phys. Rev. Lett. 92. 134301 (2004).

    Article  PubMed  ADS  CAS  Google Scholar 

  43. Influence of ultrasonic surface acoustic waves on local friction studied by lateral force microscopy, G. Behme and T. Hesjedal, Appl. Phys. A 70 (2000) 361.

    Article  ADS  CAS  Google Scholar 

  44. Influence of surface acoustic waves on lateral forces in scanning force microscopies, G. Behme and T. Hesjedal, J. Appl. Phys. 89 (2001) 4850.

    Article  ADS  CAS  Google Scholar 

  45. The origin of ultrasound-induced friction reduction in microscopic mechanical contacts, T. Hesjedal and G. Behme, IEEE Trans. Ultrason. Ferroelec. Freq. Cont. 49 (2002) 356.

    Article  Google Scholar 

  46. Probing the interface potential in stick/slip friction by a lateral force modulation technique, J. Kerssemakers and J.T.M. De Hosson, Surf. Sci. 417 (1998) 281.

    Article  CAS  Google Scholar 

  47. Interaction potential and hopping dynamics governing sliding friction, E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, and H. Brune, Phys. Rev. Lett. 91 (2003) 084502–1.

    Article  PubMed  ADS  CAS  Google Scholar 

  48. The nonlinear nature of friction, M. Urbakh, J. Klafter, D. Gourdon, and J. Israelachvili, Nature 430 (2004) 523 and Ref. therein.

    Article  ADS  CAS  Google Scholar 

  49. Tuning diffusion and friction in microscopic contacts by mechanical excitations, Z. Tshiprut, A.E. Filippov, and M. Urbakh, Phys. Rev. Lett. 95 (2005) 0166101.

    Article  ADS  CAS  Google Scholar 

  50. Chapter 15 in Intermolecular and surface forces, J. Israelachvili, Academic Press, Elsevier Ltd., 2nd edn (1992).

    Google Scholar 

  51. Hysteresis of the cantilever shift in ultrasonic force microscopy, K. Inagaki, O. Matsuda, and O.B. Wright, Appl. Phys. Lett. 80 (2002) 2386.

    Article  ADS  CAS  Google Scholar 

  52. Tribology and ultrasonic hysteresis at local scales, R. Szoszkiewicz, B.D. Huey, O.V. Kolosov, G.A.D. Briggs, G. Gremaud, A.J. Kulik, Appl. Surf. Sci. 219 (2003) 54.

    Article  CAS  Google Scholar 

  53. Probing local water contents of in vitro protein films by ultrasonic force microscopy, R. Szoszkiewicz, A.J. Kulik, G. Gremaud and M. Lekka, Appl. Phys. Lett. 86 (2005) 123901.

    Article  ADS  CAS  Google Scholar 

  54. Correlations between adhesion hysteresis and friction at molecular scales, R. Szoszkiewicz, B. Bhushan, B.D. Huey, A.J. Kulik, and G. Gremaud, J. Chem. Phys. 122 (2005) 144708.

    Article  PubMed  CAS  Google Scholar 

  55. Quantitative measure of nanoscale adhesion hysteresis by ultrasonic force microscopy, R. Szoszkiewicz, A.J. Kulik, and G. Gremaud, J. Chem. Phys. 122 (2005) 134706.

    Article  PubMed  CAS  Google Scholar 

  56. Measurements of stiff-material compliance on the nanoscale using ultrasonic force microscopy, F. Dinelli, S.K. Biswas, G.A.D. Briggs, and O.V. Kolosov, Phys. Rev. B 61 (2000) 13995.

    Article  ADS  CAS  Google Scholar 

  57. A method of evaluating local elasticity and adhesion energy from the nonlinear response of AFM cantilever vibrations, M. Muraoka and W. Arnold, JSME Int. J. Series A 44 (2001) 396.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cuberes, M.T. (2007). Nanoscale Friction and Ultrasonics. In: Gnecco, E., Meyer, E. (eds) Fundamentals of Friction and Wear. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36807-6_4

Download citation

Publish with us

Policies and ethics