Advertisement

Nanotribology of MEMS/NEMS

  • Satish Achanta
  • Jean-Pierre Celis
Part of the NanoScience and Technology book series (NANO)

Keywords

Friction Force Normal Force Adhesion Force Digital Micromirror Device Comb Drive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A. Huff, A distributed MEMS processing environment, The MEMS Exchange: A Distributed MEMS Processing Environment. Michael Huff, Corporation for National Research Initiatives Commercialization of Microsystems, MST 1998Google Scholar
  2. 2.
    B. Bhushan, CRC Handbook of Micro/nanotribology, 2nd edn, 1999.Google Scholar
  3. 3.
    Courtesy of Sandia National Laboratories.Google Scholar
  4. 4.
    B. Stark, MEMS Reliability assurance guidelines for space applications, Jet Propulsion Laboratory, NASA, JPL Publication 99-1, 1999.Google Scholar
  5. 5.
    A. White, A review of some current research in microelectromechanical systems (MEMS) with defence applications, Weapons systems division aeronautical and maritime research laboratory, DSTO, 2000.Google Scholar
  6. 6.
    Y. Blanter, Nano-electromechanical systems (NEMS), Work sponsored by FOM (o.a. Physics for Technology), NanoNed and by an EU project (CANEL), T.U. Delft, Nederlands.Google Scholar
  7. 7.
    P. Sharke, Eye on the future: Nanotechnology: hybrid NEMS, Mechanical Engineering magazine online, ASME, Feb 2001.Google Scholar
  8. 8.
    M.W. van Spengen, MEMS Reliability stiction, charging and RF MEMS, Ph.D dissertation, IMEC-K.U. Leuven, 2005Google Scholar
  9. 9.
    J.W. Judy, Microelectromechanical systems (MEMS): fabrication, design and applications, Smart Mater. Struct. 10, 2001, pp. 1115–1134CrossRefADSGoogle Scholar
  10. 10.
    J.A. Walraven, Failure mechanisms in MEMS, ITC Intern. Test Conf. 33.1, 2003, 828Google Scholar
  11. 11.
    M.W. van Spengen, MEMS reliability from a failure mechanisms perspective, Microelectron. Reliab., 43, 2003, pp. 1049–1060CrossRefGoogle Scholar
  12. 12.
    R. Maboudian, R.T. Howe, Critical review: adhesion in surface micromechanical structures, J. Vac. Sci. Technol. B, 15, 1997, p. 1CrossRefGoogle Scholar
  13. 13.
    R.E. Sulouff, “MEMS opportunities in accelerometers and gyros and the microtribological problems limiting commercialization”, in: B. Bhushan (Ed.), Tribology Issues and Opportunities in MEMS, Kluwer Academic Publishers, Dordrecht, Netherlands, 1998, pp. 109–120Google Scholar
  14. 14.
    M.R. Douglass, 36th IEEE International Reliability Physics Symposium Proceedings, IEEE, New York, 1998, pp. 9–16.Google Scholar
  15. 15.
    M.W. van Spengen, R. Puers, I. De Wolf. A physical model to predict stiction in MEMS, J. micromech. Microeng., 12, 2002, pp. 702–713.CrossRefGoogle Scholar
  16. 16.
    B. Bhushan, Plenary lecture 1st Vienna conference on micro/nano technology, Mar 2005Google Scholar
  17. 17.
    S.L. Miller, G. LaVine, M.S. Rodgers, J.J. Sniegowski, J.P. Waters, P.J. McWhorter, Routes to failure in rotating MEMS devices experiencing sliding friction, Proc. SPIE Micromachined devices and Comp. III., 3224, 1997, pp. 24–30ADSGoogle Scholar
  18. 18.
    X. Lafontan, F. Pressecq, F. Beaudoin, S. Rigo, M. Dardalhon. The advent of MEMS in space. Microelectron Reliab 43,2003, pp. 1061–1083CrossRefGoogle Scholar
  19. 19.
    Courtesy of TIMA micro and nanosystems group, France.Google Scholar
  20. 20.
    N.R. Tas, A.H. Sonnenberg, A.F.M. Sander, M.C. Elwenspoek, MEMS. In: Proceedings, IEEE, Tenth Annual International Workshop on MEMS-97, 26–30, 1997, pp. 215–220Google Scholar
  21. 21.
    M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili. The nonlinear nature of friction, Nature 430, 2004, pp. 525–528PubMedCrossRefADSGoogle Scholar
  22. 22.
    B. Bhushan, Handbook of Nanotechnology, Springer, Berlin/Heidelberg/New York, 2004.CrossRefGoogle Scholar
  23. 23.
    B. Bhushan, Applications of micro/nanotribology to magnetic storage devices and MEMS, Trib. Int. 28, 1995, pp. 85–96.CrossRefGoogle Scholar
  24. 24.
    D.W. Brenner, Mysteries of Friction and Wear Unfolding: CMS Advances the Field of Tribology, The Amptiac Newsletter, 5, 2001, pp. 1–14Google Scholar
  25. 25.
    C.M. Mate. Force microscopy studies of the molecular origins of friction and lubrication, IBM J. Res. Dev. 39, 1995, pp. 617–627.CrossRefGoogle Scholar
  26. 26.
    J.N. Israelachvili, “Techniques for Direct Measurements of Forces Between Surfaces in Liquids at the Atomic Scale,” Chemtracts Anal. Phys. Chem. 1, 1, 1989Google Scholar
  27. 27.
    A.D. Romig, M.T. Dugger, P.J. McWhorter. Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability, Acta Mater. 51, 2003, pp. 5837–5866CrossRefGoogle Scholar
  28. 28.
    F. Bowden, D. Tabor, The Friction and Lubrication of solids, Clarendon Press, Oxford 1968.Google Scholar
  29. 29.
    N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, M. Elwenspoek. Stiction in surface micromachining, J. Micromech. Microeng. 6, 1996, pp. 385.CrossRefADSGoogle Scholar
  30. 30.
    T. Stifter, O. Marti, B. Bhushan, Phys. Rev. B 62, 2000, pp. 13667–13673.CrossRefADSGoogle Scholar
  31. 31.
    Y. Ando, J. Ino. Friction and pull-off forces on sub-micrometer size asperities, Wear 216, 1998, pp. 115–122CrossRefGoogle Scholar
  32. 32.
    K.L. Johnson, K. Kendall, A.D. Roberts. Proc. R. Soc. London A 324, 1971, pp. 301.ADSCrossRefGoogle Scholar
  33. 33.
    B. Bhushan, Self-assembled monolayers for controlling hydrophobicity and/or friction and wear, in: B. Bhushan (Ed.), Modern Tribology Handbook, Vol. 2: Materials Coatings and Industrial Applications, CRC Press, Boca Raton, FL, 2001, pp. 909–929Google Scholar
  34. 34.
    B.N.J. Persson, E. Tosatti. The effect of surface roughness on the adhesion of elastic solids, J. Chem. Phys., 115, 2001, pp. 5597–5610CrossRefADSGoogle Scholar
  35. 35.
    S.-H. Yang, S.M. Hsu, Effect of colloidal probe random surface features on adhesion, Proc. World Tribology Congress III, Sep 2005.Google Scholar
  36. 36.
    M.P. de Boer, J.A. Knapp, T.A. Michalske, U. Srinivasan, R. Maboudian. Adhesion hysteresis of silane coated microcantilevers. Acta Mater. 48, 2000, pp. 4531.CrossRefGoogle Scholar
  37. 37.
    C.H. Mastrangelo, C.H. Hsu, A simple experimental technique for the measurement of the work of adhesion of microstructures, IEEE Solid-State Sensor and Actuator Workshop, New York, USA, 1992, pp. 208.Google Scholar
  38. 38.
    M.P. de Boer, J.A. Knapp, T.M. Mayer, T.A. Michalske. The role of interfacial properties on MEMS performance and reliability, Proc. SPIE 3825, 1999, pp. 2CrossRefADSGoogle Scholar
  39. 39.
    J.J. Rha, S.C. Kwon, J.R. Cho, S. Yim, N. Saka. Creation of ultra-low friction and wear surfaces micro-devices using carbon films, Wear 259, 2005, pp. 765–770.CrossRefGoogle Scholar
  40. 40.
    W.R. Ashurst, C. Yau, C. Carraro, R. Maboudian, M.T. Dugger, Dichlorodimethylsilane as an anti-stiction monolayer for MEMS: A comparison to the Octadecyltrichlosilane self-assembled monolayer, J. MEMS, 10, 2001, pp. 41–49.Google Scholar
  41. 41.
    B. Bhushan, T. Kasai, G. Kulik, L. Barbieri, P. Hoffmann, AFM study of perfluoroalkylsilane and alkylsilane selfassembled monolayers for anti-stiction in MEMS/NEMS, Ultramicroscopy, 105, 2005, pp. 176–188CrossRefGoogle Scholar
  42. 42.
    S.L. Miller, J.J. Sniegowski, G. LaVigne, P.J. McWhorter. Friction in surface micromachined microengines, Sandia National Laboratories, (www.sandia.gov/documents).Google Scholar
  43. 43.
    E. Santer, D. Spaltmann. Adhesion of cleaned nanoscopic metal contacts, Tribotest 9–4, 2003, pp. 333–344CrossRefGoogle Scholar
  44. 44.
    R.W. Carpick, N. Agrait, D.F. Ogletree, M. Salmeron, Variation of the interfacial shear strength and adhesion of a nanometer-sized contact, Langmuir 12, pp. 3334–3340Google Scholar
  45. 45.
    B.V. Derjaguin, V.M. Muller, Y.P. Toporov. J. Colloids Interface Sci. 1975, pp. 53–314Google Scholar
  46. 46.
    Y. Ando, Y. Ishikawa, T. Kitahara, Friction characteristics and adhesion force under low normal load, Trans. ASME J. Tribol. 117, 1995, pp. 569–574.CrossRefGoogle Scholar
  47. 47.
    J. Krim, R.A. Widom, Damping of a Crystal Oscillator by an Adsorbed Monolayer and Its Relation to Interfacial Viscosity, Phys. Rev. B 38, 1988, pp. 12184CrossRefADSGoogle Scholar
  48. 48.
    S. Sundararajan, B. Bhushan. Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/ friction force microscope, J. Vac. Sci. Technol. A 19(4), 2001, pp. 1777–1785CrossRefADSGoogle Scholar
  49. 49.
    H. Liu, B. Bhushan, Nanotribological characterization of digital micromirror devices using an atomic force microscope, Ultramicroscopy 100, 2004, pp. 391–412PubMedCrossRefGoogle Scholar
  50. 50.
    K.S.K. Karuppiah, S. Sundararajan. A comparison of lateral calibration techniques for quantitative friction force microscopy, Proc. World Tribology Congress III, sep 2005.Google Scholar
  51. 51.
    S. Zhang, G. Wagner, S.N. Medyanik, W.-K. Liu, Y.-H. Yu, Y.-W. Chung, Experimental and molecular dynamics simulation studies of friction behavior of hydrogenated carbon films, Surf. and Coat. Technol. 177–178 (2004) 818–823CrossRefGoogle Scholar
  52. 52.
    H. Wang, Y.-Z. Hu, T. Zhang, Simulations on atomic-scale friction between self-assembled monolayers: Phononic energy dissipation, Tribology International, 2005Google Scholar
  53. 53.
    M.G. Lim, J.C. Chang, D.P. Schultz, R.T. Howe, R.M. White. Polysilicon microstructures to characterize static friction. In: Proc IEEE Workshop on Micro Electro Mechanical Systems, 82, 1990, pp. 11–14Google Scholar
  54. 54.
    D.C. Senft, M.T. Dugger. Friction and wear in surface micromachined tribological test devices. Proc. SPIE, 1997, pp. 3224–3231Google Scholar
  55. 55.
    M.P. de Boer, D.L. Luck, J.A. Walraven, J.M. Redmond. Characterization of an inchworm actuator fabricated by polysilicon surface micromachining. Proc. SPIE, 4558, 2001, pp. 169.CrossRefADSGoogle Scholar
  56. 56.
    M.Z. Huq, J.-P. Celis, Expressing wear rate in sliding contacts based on dissipated energy, Wear, 252, 2002, pp 375–383CrossRefGoogle Scholar
  57. 57.
    D. Drees, S. Achanta, J.-P. Celis, Surface testing into the 21st century, Bridging the gap between nano and macro, 1st Vienna International conference on micro-and nano-technology, Vienna, Austria, 9–11 March 2005.Google Scholar
  58. 58.
    B. Bhushan, Nanotribology and nanomechanics, Wear 259, 2005, pp. 1507–1531CrossRefGoogle Scholar
  59. 59.
    R. Kaneko, T. Miyamoto, Y. Andoh, E. Hamada. Microwear, Thin Solid Films, 273, 1996, pp. 105–111CrossRefGoogle Scholar
  60. 60.
    S. Miyake, R. Kaneko, Microtribological properties and potential applications of hard lubricating coatings, Thin Solid Films, 212, 1992, pp. 256–261CrossRefGoogle Scholar
  61. 61.
    S. Sundararajan, B. Bhushan, Micro/nanotribology of ultra-thin hard amorphous carbon coating using atomic force /friction force microscopy, Wear, 225–229, 1999, pp. 678–689CrossRefGoogle Scholar
  62. 62.
    A.R. Machcha. An investigation of nanowear in contact recording, Wear, 197, 1996, pp. 211–220CrossRefGoogle Scholar
  63. 63.
    A. Ramalho, J.-P. Celis. High temperature fretting behavior of plasma vapor deposition TiN Coatings, Surf. Coat. Technol, 155, 2002, pp. 169–175CrossRefGoogle Scholar
  64. 64.
    Z. Tao, B. Bhushan. Bonding, degradation, and environmental effects on novel perfluoropolyether lubricants, Wear, 259, 2005, pp. 1352–1361CrossRefGoogle Scholar
  65. 65.
    U. Beerschwinger, T. Albrecht, D. Mathieson, R.L. Reuben, S.J. Yang. Wear at microscopic scales and light loads for MEMS applications, Wear, 181–183, 1995, pp. 42–35Google Scholar
  66. 66.
    S. Achanta, D. Drees, J.-P. Celis. Friction and nanowear of hard coatings in reciprocating sliding at milli-Newton loads, Wear, 259, 2005, pp. 719–729CrossRefGoogle Scholar
  67. 67.
    K.J. Gabriel, F. Behl., In-situ friction and wear measurements in polysilicon mechanisms, Sens. Actuators, A21–23, 1990, pp. 184CrossRefGoogle Scholar
  68. 68.
    M. Mehregany, S.D. Senturia and J.H. Lang, Measurements of wear in polysilicon micromotors, IEEE Trans. Electron. Devices, 39, 1992, pp. 1136–1143CrossRefADSGoogle Scholar
  69. 69.
    M.R. Houston, R.T. Howe, R. Maboudian Proc. Solid-State Sensors and Actuators-Transducers 95, Stockholm, Sweden. 1995, pp. 210.Google Scholar
  70. 70.
    E.D. Flinn, Lotus leaf yields slick idea for MEMS, Aerospace America/May 2005, pp. 25Google Scholar
  71. 71.
    K. Glasmästar (Eds.), S. Sjödin (Eds.), Final report for the research program, Biocompatible materials, SSF research programme: Biocompatible Materials, Chalmers University of Technology and Göteborg University, 2004, pp. 19–39.Google Scholar
  72. 72.
    E.-S. Yoon, S.R. Arvind, K. Hosung, B. Kim, D.-H. Suh, K.Y. Jeong, H. Eui. Tribological Properties of Nano/Micro-Patterned PMMA surfaces on silicon wafer, Proc. World Tribology congress III, sep 2005Google Scholar
  73. 73.
    D. Liu, G. Benstetter, E. Lodermeier. Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements, Thin Solid Films, 436, 2003, pp. 244–249CrossRefGoogle Scholar
  74. 74.
    R. Huber, N. Singer, Out with the old and in with the new, Materials today Jul/Aug 2002, pp. 36–43Google Scholar
  75. 75.
    A.R. Kraussa, Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diam. Relat. Mater. 10, 2001, pp. 1952–1961CrossRefGoogle Scholar
  76. 76.
    X. Li, B. Bhushan, Micro/nanomechanical characterization of ceramic films for microdevices, Thin Solid Films, 340, 1999, pp. 210–217CrossRefGoogle Scholar
  77. 77.
    G. Radhakrishnan, R.E. Robertson, P.M. Adams, R.C. Cole. Integrated TiC coatings for moving MEMS, Thin Solid Films, 420–421, 2002, pp. 553–564CrossRefGoogle Scholar
  78. 78.
    S. Sundararajan, B. Bhushan. Micro/nanotribological studies of polysilicon and SiC films for MEMS applications, Wear, 217,1998, pp. 251–261CrossRefGoogle Scholar
  79. 79.
    D. Liu, G. Benstetter, E. Lodermeier. Surface roughness, mechanical and tribological properties of ultrathin tetrahedral amorphous carbon coatings from atomic force measurements, Thin Solid Films, 436, 2003, pp. 244–249.CrossRefGoogle Scholar
  80. 80.
    H.-S. Ahna, P.D. Cuonga, S. Park, Y.-W. Kim, J.-C. Lim. Effect of molecular structure of self-assembled monolayers on their tribological behaviors in nano-and microscales, Wear, 255, 2003, pp. 819–825CrossRefGoogle Scholar
  81. 81.
    R. Maboudian, W.R. Ashurst, C. Carraro, Self-assembled monolayers as antistiction coatings for MEMS: characteristics and recent developments, Sens. Actuators 82, 2000, pp. 219–223CrossRefGoogle Scholar
  82. 82.
    Nikhil S. Tambe, B. Bhushan, Micro/nanotribological characterization of PDMS and PMMA used for BioMEMS/NEMS applications, Ultramicroscopy, 105, 2005, pp. 238–247.CrossRefGoogle Scholar
  83. 83.
    X.-C. Lu, B. Shi, L.K.Y. Li, J. Luo, J. Wang, H. Li. Investigation on microtribological behavior of thin films using friction force microscopy, Surf. Coat. Technol. 128–129, 2000, pp. 341–345CrossRefGoogle Scholar
  84. 84.
    A.A. Voevodin and J.S. Zabinski, Supertough wear-resistant coatings with “chameleon” surface adaptation, Thin Solid Films, 370, 2000, pp 223–231CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Satish Achanta
    • 1
  • Jean-Pierre Celis
    • 1
  1. 1.Dept. MTMKatholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations