Fundamentals of Friction and Wear pp 219-254 | Cite as
NanoMechanics: Elasticity in Nano-Objects
Chapter
Keywords
Atomic Force Microscope Optical Tweezer Hertz Model Atomic Force Microscope Experiment Magnetic Tweezer
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991).ADSCrossRefGoogle Scholar
- 2.Z.W. Pan, Z.R. Dai, and Z.L. Wang, Nanobelts of Semiconducting Oxides, Science 291, 1947 (2001).PubMedADSCrossRefGoogle Scholar
- 3.X. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66 (2001).PubMedADSCrossRefGoogle Scholar
- 4.R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447 (1998).ADSCrossRefGoogle Scholar
- 5.C. Gómez-Navarro, P. J. d. Pablo, and J. Gómez-Herrero, Radial electromechanical properties of carbon nanotubes, Adv. Mater. 16, 549 (2004).CrossRefGoogle Scholar
- 6.B. Cappella and G. Dietler, Force-distance curves by atomic force microscopy, Surf. Sci. Rep. 34, 1 (1999).CrossRefGoogle Scholar
- 7.H.J. Hertz, On the contact of elastic solids, Reine Angew. Math 92, 156 (1882).Google Scholar
- 8.M. Radmacher, M. Fritz, and P.K. Hansma, Imaging soft samples with the atomic-force microscope-gelatin in water and propanol, Biophys. J. 69, 264(1995).PubMedCrossRefGoogle Scholar
- 9.H.W. Wu, T. Kuhn, and V.T. Moy, Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking, Scanning 20, 389 (1998).PubMedCrossRefGoogle Scholar
- 10.M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, and P.K. Hansma, Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope, Biophysical Journal 70, 556 (1996).PubMedCrossRefGoogle Scholar
- 11.B.J. Briscoe, K.S. Sebastian, and M.J. Adams, The effect of indenter geometry on the elastic response to indentation, J. Phys. D 27, 156 (1994).CrossRefGoogle Scholar
- 12.A.B.M. et al., ?, J. Biochem 34, 1545 (2001).Google Scholar
- 13.F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips, Physical Review E 72, 021914 (2005).ADSCrossRefGoogle Scholar
- 14.B.V. Derjaguin, V.M. Muller, and Y.P.T. Toporov, Effect of contact deformations on adhesion of particles, J. Colloid Interface Sci. 53, 314 (1975).CrossRefGoogle Scholar
- 15.K.L. Johnson, K. Kendall, and A.D. Roberts, Surface energy and contact of elastic solids, Proc. R. Soc. A 324, 301 (1971).ADSCrossRefGoogle Scholar
- 16.D. Maugis and H.M. Pollock, Surface forces, deformation and adherence at metal microcontacts, ActaMetall 32, 1323 (1984).Google Scholar
- 17.K. Shull, Contact mechanics and the adhesion of soft solids, MATERIALS SCIENCE & ENGINEERING R-REPORTS 36, 1 (2002).CrossRefGoogle Scholar
- 18.J.R. Barber and M. Ciavarella, Contact mechanics, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 37, 29 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
- 19.S. Schmauder, Computational mechanics, ANNUAL REVIEW OF MATERIALS RESEARCH 32, 437 (2002).CrossRefGoogle Scholar
- 20.C. Tsakmakis, Description of plastic anisotropy effects at large deformations — Part I: restrictions imposed by the second law and the postulate of Il’iushin, INTERNATIONAL JOURNAL OF PLASTICITY 20, 167 (2004).zbMATHCrossRefGoogle Scholar
- 21.I. Kragelsky, M. Dobychin, and V. Kombalov, Friction and wear calculation methods (New York: Pergamon Press, ADDRESS, 1982).Google Scholar
- 22.J. Greenwood and J. Williamson, Contact of nominally flat surfaces, Proc.Roy.Soc.Lond. A295, 300 (1966).ADSGoogle Scholar
- 23.P. Nayak, Random process model of rough surfaces, ASME J Lubr Tecnol 93,398 (1971).CrossRefGoogle Scholar
- 24.J. Ogilvy, Numerical simulations of friction between contacting rough surfaces, J.Phys. D. 24, 2098 (1991).ADSCrossRefGoogle Scholar
- 25.J. Sugimura, Stochastic modeling of surface roughness, JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS 43, 933 (1998).Google Scholar
- 26.P. Meakin, The growth of rough surfaces and interfaces, PHYSICS REPORTSREVIEW SECTION OF PHYSICS LETTERS 235, 189 (1993).ADSGoogle Scholar
- 27.J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, and U. Landman, Frictional forces and Amontons’ law: From the molecular to the macroscopic scale, JOURNAL OF PHYSICAL CHEMISTRY B 108, 3410 (2004).CrossRefGoogle Scholar
- 28.A. Majumdar and B. Bhushan, Fractal Model of Elastic-Plastic Contact Between Rough Surfaces, Journal of Tribology-Transactions of the ASME 113,1 (1991).CrossRefGoogle Scholar
- 29.H. Zahouani, R. Vargiolu, and J.L. Loubet, Fractal models of surface topography and contact mechanics, Math. Comput.Modell. 28, 517 (1998).zbMATHCrossRefGoogle Scholar
- 30.W. Yan and K. Komvopoulos, Contact Analysis of Elastic-Plastic fractal surfaces, J. Appl. Phys. 84, 3617 (1998).ADSCrossRefGoogle Scholar
- 31.J.C. Chung and J.F. Lin, Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces, Transactions of the ASME 126, 646 (2004).CrossRefGoogle Scholar
- 32.B.N.J. Persson, Elastoplastic Contact between Randomly Rough Surfaces, Physical Review Letters 87, 116101 (2001).PubMedADSCrossRefGoogle Scholar
- 33.K.N.G. Fuller and D. Tabor, Effect of surface-roughness on adhesion of elastic solids, Proc.R.Soc.Lond A 345, 327 (1975).ADSCrossRefGoogle Scholar
- 34.B.N.J. Persson and E. Tosatti, The effect of surface roughness on the adhesion of elastic solids, Journal of Chemical Physics 115, 5597 (2001).ADSCrossRefGoogle Scholar
- 35.R. Buzio, C. Boragno, and U. Valbusa, Contact mechanics and friction of fractal surfaces probed by atomic force microscopy, Wear 254, 917 (2003).CrossRefGoogle Scholar
- 36.B. Luan and M. Robbins, The breakdown of continuum models for mechanical contacts, Nature 435, 929 (2005).PubMedADSCrossRefGoogle Scholar
- 37.O. Miesbauer, M. Gotzinger, and W. Peukert, Molecular dynamics simulations of the contact between two NaCl nano-crystals: adhesion, jump to contact and indentation, Nanotechnology 14, 371 (2003).ADSCrossRefGoogle Scholar
- 39.L.-O. Heim, M. Kappl, and H.-J. Butt, Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements, Langmuir 20,2760 (2004).PubMedCrossRefGoogle Scholar
- 40.J. Hutter, Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements, Langmuir 21, 2630 (2005).PubMedCrossRefGoogle Scholar
- 41.T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Water molecules confined in sub-nanometer gaps, submitted to Nature (2005).Google Scholar
- 42.S. Garcia-Manyes, A. Guell, P. Gorostiza, and F. Sanz, Nanomechanics of silicon surfaces with atomic force microscopy: An insight to the first stages of plastic deformation, J. Chem. Phys. 123, 114711 (2005).PubMedCrossRefGoogle Scholar
- 43.M. Rost, L. Crama, P. Schakel, E. van Tol, G. van Velzen-Williams, C. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. Katan, K. Schoots, R. Schumm, W. van Loo, T.H. Oosterkamp, and J. Frenken, Scanning probe microscopes go video rate and beyond, Rev. Sci. Instr. 76, 053710 (2005).CrossRefGoogle Scholar
- 44.B. Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Heidelberg, 2004).CrossRefGoogle Scholar
- 45.A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, AFM-Tip-Integrated Amperometric Microbiosensors: High-Resolution Imaging of Membrane Transport, Angewandte Chemie Int. Ed. 44, 3419 (2005).CrossRefGoogle Scholar
- 46.E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971 (1997).CrossRefGoogle Scholar
- 47.P. Poncharal, Z.L. Wang, D. Urgarte, and W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283,1513 (1999).PubMedADSCrossRefGoogle Scholar
- 48.J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.W. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, and L. Forró, Elastic and shear moduli of single-walled carbon nanotube rope, Phys. Rev. Lett. 82, 944 (1999).ADSCrossRefGoogle Scholar
- 49.J.H. Song, X. Wang, E. Riedo, and Z. Wang, Elastic Property of Vertically Aligned Nanowires, Nano Letters 5, 1954 (2005).PubMedCrossRefGoogle Scholar
- 50.W. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7, 1564 (1992).ADSCrossRefGoogle Scholar
- 51.W. Oliver, Alternative technique for analyzing instrumented indentation data, Journal of Materials Research 16, 3202 (2001).ADSCrossRefGoogle Scholar
- 52.J. Pethica, R. Hutchings, and W. Oliver, Hardness measurement at penetration depths as small as 20-nm, Philosophical Magazine A 48, 593 (1983).CrossRefGoogle Scholar
- 53.E.T. Lilleodden, W. Bonin, J. Nelson, J.T. Wyrobek, and W.W. Gerberich, In-situ imaging of Mu-N load indents into gas, J. of Mat. Res, 10, 2162 (1995).ADSCrossRefGoogle Scholar
- 54.C. Schuh, J. Mason, and A. Lund, Quantitative Insight into Dislocation Nucleation from High-temperature Nanoindentation Experiments, Nature Materials 4, 617 (2005).PubMedADSCrossRefGoogle Scholar
- 55.N. Burnham and R. Colton, J. Vac. Sci. Tech. A 7, 2906 (1989).ADSCrossRefGoogle Scholar
- 56.T. Bell, J. Field, and M. Swain, Elastic plastic characterization of thin-films with spherical indentation, Thin Solid Films 220, 289 (1992).CrossRefGoogle Scholar
- 57.C.A. Clifford and M. Seah, Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation, Appl. Surf. Sci. 252, 1915 (2005).CrossRefGoogle Scholar
- 58.T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Twisting and stretching single DNA molecules, Prog. in Biophys. & Mol. Biol. 74, 115(2000).CrossRefGoogle Scholar
- 59.S.B. Smith, L. Finzi, and C. Bustamante, Direct Mechanical Measurements of the Elasticity of Single DNA Molecules by Using Magnetic Beads, Science 258, 1122 (1992).PubMedADSCrossRefGoogle Scholar
- 60.T. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette, Behavior of supercoiled DNA, Biophys. J. 74, 2016 (1998).PubMedCrossRefGoogle Scholar
- 61.F. Assi, R. Jenks, J. Yang, C. Love, and M. Prentiss, Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers, J. Appl. Phys. 92, 5584 (2002).ADSCrossRefGoogle Scholar
- 62.A. Bausch, F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry, Biophys. J. 75, 2038 (1995).CrossRefGoogle Scholar
- 63.N. Wang, J. Butler, and D. Ingber, Mechanotransduction across the cell-surface and through the cytoskeleton, Science 260, 1124 (1993).PubMedADSCrossRefGoogle Scholar
- 64.C. Haber and D. Wirtz, Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instr. 71, 4561 (2000).ADSCrossRefGoogle Scholar
- 65.K. Svoboda and S. Block, Optical trapping of metallic Rayleigh particles, Opt. Lett. 19, 930 (1994).ADSCrossRefGoogle Scholar
- 66.P. Ke and M. Gu, Characterization of trapping force on metallic Mie particles, Appl. Opt. 38, 160 (1999).ADSCrossRefGoogle Scholar
- 67.L. Chislain, N. Switz, and W. Webb, Measurements of small forces using and optical trap, Rev. Sci. Instr. 65, 2762 (1994).ADSCrossRefGoogle Scholar
- 68.R. Litvinov, H. Shuman, J. Bennett, and J. Weisel, Binding strength and activation state of single fibrinogen-integrin pairs on living cells, Proc. Natl. Acad. Sci. 99, 7426 (2002).PubMedADSCrossRefGoogle Scholar
- 69.F. Gittes and C. Schmidt, Signals and noise in micromechanical measurements, Methods Cell. Biol. 55, 129 (1998).PubMedCrossRefGoogle Scholar
- 70.A. Pralle, M. Prummer, E. Florin, E. Stelzer, and J. Horber, Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light, Microsc. Res. Tech. 44, 378 (1999).PubMedCrossRefGoogle Scholar
- 71.D. Grier, A revolution in optical manipulation, Nature 424, 810 (2003).PubMedADSCrossRefGoogle Scholar
- 72.V. Bangert and P. Mansfield, Magnetic-field gradient coils for NMR imaging, J. Phys. E 15, 235 (1982).ADSCrossRefGoogle Scholar
- 73.Y. Liu, D. Cheng, G. Sonek, M. Berns, C. Chapman, and B. Tromberg, Evidence for localized cell heating induced by infrared optical tweezers, Biophys. J. 68, 2137 (1995).PubMedCrossRefGoogle Scholar
- 74.A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986).ADSCrossRefGoogle Scholar
- 75.Y. Harada and T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Opt. Commun. 124, 529 (1996).ADSCrossRefGoogle Scholar
- 76.E. Dufresne and D. Grier, Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Sci. Instr. 69, 1974 (1998).ADSCrossRefGoogle Scholar
- 77.L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. Bryant, and K. Dholakia, Controlled rotation of optically trapped microscopic particles, Science 292, 912 (2001).PubMedADSCrossRefGoogle Scholar
- 78.V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, Optically controlled three-dimensional rotation of microscopic objects, Appl. Phys. Lett. 82, 829 (2003).ADSCrossRefGoogle Scholar
- 79.J. Curtis, B. Koss, and D. Grier, Dynamic holographic optical tweezers, Opt. Commun. 207, 169 (2002).ADSCrossRefGoogle Scholar
- 80.J. Curtis and D. Grier, Structure of optical vortices, Phys. Rev. Lett. 90, 133901 (2003).PubMedADSCrossRefGoogle Scholar
- 81.L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M.D. Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, Three-dimensional magneto-optic trap for micro-object manipulation, Opt. Lett. 26, 1359 (2001).ADSCrossRefGoogle Scholar
- 82.M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394, 348 (1998).ADSCrossRefGoogle Scholar
- 83.A.L. Porta and M. Wang, Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles, Phys. Rev. Lett. 92, 190801 (2004).PubMedCrossRefGoogle Scholar
- 84.J. Joykutty, V. Mathur, V. Venkataraman, and V. Natarajan, Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation, Phys. Rev. Lett. 95, 193902 (2005).PubMedADSCrossRefGoogle Scholar
- 85.P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, and P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103 (1991).ADSCrossRefGoogle Scholar
- 86.E. Meyer, R. Overney, K. Dransfeld, and T. Gyalog, Friction and Rheology on the Nanometer Scale (World Scientific, Singapore, 2002).Google Scholar
- 87.R.W. Carpick, D.F. Ogletree, and M. Salmeron, Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548 (1997).ADSCrossRefGoogle Scholar
- 88.M.A. Lantz, S. J. O’Shea, M.E. Welland, and K.L. Johnson, Simultaneous force and conduction measurements in atomic force microscopy, Phys. Rev. B 55(56), 10776 (15345) (1997).ADSCrossRefGoogle Scholar
- 91.M.F. Yu, T. Kowaleweski, and R.S. Ruoff, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett. 85, 1456 (2000).PubMedADSCrossRefGoogle Scholar
- 92.W. Shen, B. Jiang, B.S. Han, and S.-s. Xie, Investigation of the radial compression of carbon nanotubes with a scanning probe microscope, Phys. Rev. Lett. 84, 3634 (2000).PubMedADSCrossRefGoogle Scholar
- 93.A.P. Boresi and O.M. Sidebottom, Advanced Mechanics of Materials (John Wiley & Sons, 5th Ed., ADDRESS, 1993).Google Scholar
- 94.G. Briggs, Acoustic microscopy (Oxford University Press, Oxford, 1992).Google Scholar
- 95.B. Cretin and F. Stahl, Scanning microdeformation microscopy, Appl. Phys. Lett. 62, 829 (1993).ADSCrossRefGoogle Scholar
- 96.U. Rabe and W. Arnold, Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64, 1493 (1994).ADSCrossRefGoogle Scholar
- 97.E. Dupas, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 2000.Google Scholar
- 98.N. Burnham, A. Kulik, G. Gremaud, P. Gallo, and F. Oulevey, Scanning local-acceleration microscopy, J. Vac. Sci. Techn. B 14, 794 (1996).CrossRefGoogle Scholar
- 99.F. Oulevey, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 1999.Google Scholar
- 100.G. Rochat, Y. Leterrier, C. Plummer, J. Manson, R. Szoszkiewicz, and A. Kulik, Effect of substrate crystalline morphology on the adhesion of plasma enhanced chemical vapor deposited thin silicon oxide coatings on polyamide, J. Appl. Phys. 95, 5429 (2004).ADSCrossRefGoogle Scholar
- 102.O. Kolosov and K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic force microscope, Jpn. J. Appl. Phys. 32, 22 (1993).CrossRefGoogle Scholar
- 103.R. Szoszkiewicz, B. Bhushan, B.D. Huey, A. Kulik, and G. Gremaud, Correlations between Adhesion Hysteresis and Friction at Molecular Scales, J. Chem. Phys. 122.Google Scholar
- 104.R. Szoszkiewicz, A. Kulik, and G. Gremaud, Quantitative measure of nanoscale adhesion hysteresis by Ultrasonic Force Microscopy, J. Chem. Phys. 122, 134706 (2005).PubMedCrossRefGoogle Scholar
- 105.R. Szoszkiewicz, B. Bhushan, B.D. Huey, A. Kulik, and G. Gremaud, Adhesion hysteresis and friction at nanometer and micrometer lengths, accepted in J. Appl. Phys. (2006).Google Scholar
- 106.T. Cuberes, G. Briggs, and O. Kolosov, AFM-modes for non-linear detection of ultrasonic vibration (Oxford University Press, Oxford, 1998).Google Scholar
- 107.F. Dinelli, M. Castell, D. Ritchie, N. Mason, G. Briggs, and O. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy, Phil. Mag. A 80, 2299 (2000).ADSCrossRefGoogle Scholar
- 108.F. Dinelli, N. Burnham, A. Kulik, P. Gallo, G. Gremaud, and W. Benoit, Mechanical properties studied at the nanoscale using Scanning Local-Acceleration Microscopy (SLAM), J. Phys IV 6, 731 (1996).Google Scholar
- 109.K. Yamanaka, UFM observation of lattice defects in highly oriented pyrolytic graphite, Thin Solid Films 273, 116 (1996).CrossRefGoogle Scholar
- 110.O. Kolosov, M.R. Castell, C.D. Marsh, and G.A.D. Briggs, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy, Phys. Rev. Lett. 81, 1046 (1998).ADSCrossRefGoogle Scholar
- 111.F. Dinelli, H.E. Assender, and N. Takeda, Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM), Surf. Interf. Anal. 27, 562 (1999).CrossRefGoogle Scholar
- 112.K. Porfyrakis, O. Kolosov, and H. Assender, AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples, J. Appl. Pol. Sci. 82, 2790 (2001).CrossRefGoogle Scholar
- 113.H. Geisler, M. Hoehn, M. Rambach, M. Meyer, E. Zschech, M.M.A. Romanov, M. Bobeth, W. Pompe, and R. Geer, Elastic mapping of sub-surface defects by ultrasonic force microscopy: limits of depth sensitivity, Proc. of Conf. on Micr. Semicond. Mat. 2001 169, 527 (2001).Google Scholar
- 114.D. Hurley, M. Kopycinska-Muller, A. Kos, and R. Geiss, Quantitative elastic property measurements at the nanoscale with atomic force acoustic microscopy, Adv. Eng. Mat. 7, 713 (2005).CrossRefGoogle Scholar
- 115.S. Amelio, A. Goldade, U. Rabe, V. Scherer, B. Bhushan, and W. Arnold, Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75 (2001).CrossRefGoogle Scholar
- 116.P. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Carbon nanotube electronics, Proc. IEEE 91, 1772 (2003).CrossRefGoogle Scholar
- 117.J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A 74, 339 (2002).ADSCrossRefGoogle Scholar
- 118.E.T. Thostenson, Z. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
- 119.L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, and P. Hakonen, Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes, Microelectron. Eng. 61–62, 687 (2002).CrossRefGoogle Scholar
- 120.J.P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297 (1997).ADSCrossRefGoogle Scholar
- 121.V.N. Popov and V.E.V. Doren, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61, 3078 (2000).ADSCrossRefGoogle Scholar
- 122.Y. Xia, M.W. Zhao, Y.C. Ma, M.J. Ying, X.D. Liu, P.J. Liu, and L.M. Mei, Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure, Phys. Rev. B 65, 155415 (2002).CrossRefGoogle Scholar
- 123.J.A. Elliot, J.K.W. Sandler, A.H. Windle, R.J. Young, and M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent, Phys. Rev. Lett. 92, 095501 (2004).ADSCrossRefGoogle Scholar
- 124.M.H. Park, J.W. Jang, C.E. Lee, and C.J. Lee, Interwall support in double-walled carbon nanotubes studied by scanning tunneling microscopy, Appl. Phys. Lett. 86, 023110 (2005).CrossRefGoogle Scholar
- 125.T. Hertel, R.E. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface can der Waals forces, Phys. Rev. B 58, 13870 (1998).ADSCrossRefGoogle Scholar
- 126.E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, and P.L. McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401(2003).PubMedADSCrossRefGoogle Scholar
- 127.S. Dag, O. Gulseren, S. Ciraci, and T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes, Appl. Phys. Lett. 83,3180 (2003).ADSCrossRefGoogle Scholar
- 128.P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, and R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201 (1999).CrossRefGoogle Scholar
- 129.V. Lordi and N. Yao, Radial compression and controlled cutting of carbon nanotubes, J. Chem. Phys. 109, 2509 (1998).ADSCrossRefGoogle Scholar
- 130.L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B 69, 045414 (2004).ADSCrossRefGoogle Scholar
- 131.I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen,, and E. Riedo, Radial Elasticity of Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 94, 175502 (2005).PubMedADSCrossRefGoogle Scholar
- 132.B.T. Kelly, Physics of Graphite (PUBLISHER, ADDRESS, 1981).Google Scholar
- 133.Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-From materials to nanodevices, Adv. Mater. 15, 432 (2003).CrossRefGoogle Scholar
- 134.M. Buongiorno-Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, Mechanical properties, defects and electronic behavior of carbon naotubes, Carbon 38, 1703 (2000).CrossRefGoogle Scholar
- 135.G. Zhang, M. Long, Z.-Z. Wu, and W.-Q. Yu, Mechanical properties of hepatocellular carcinoma cells, World Journal of Gastroenterology 8, 243 (2002).PubMedGoogle Scholar
- 136.H.F. Bettinger, T. Dumitrica, G.E. Scuseria, and B.I. Yakobson, Mechanically induced defects and stregth of BN nanotubes, Phys. Rev. B 65, 041406 (2002).ADSCrossRefGoogle Scholar
- 137.J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A 69, 255 (1999).ADSCrossRefGoogle Scholar
- 138.J.P. Salvetat, A.J. Kulik, J.M. Bonard, and et al., Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes., Adv. Mater. 11, 161 (1999).CrossRefGoogle Scholar
- 139.L. Shen and J. Li, Transversely isotropic elastic properties of multiwalled carbon nanotubes, Phys. Rev. B 71, 035412 (2005).ADSCrossRefGoogle Scholar
- 140.L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater. 15, 464 (2003).CrossRefGoogle Scholar
- 141.P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, and Z.L. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science 309, 1007 (2005).CrossRefGoogle Scholar
- 142.S.X. Mao, M. Zhao, and Z.L. Wang, Nanoscale mechanical behavior of individual semiconducting nanobelts, Appl. Phys. Lett. 83, 993 (2003).ADSCrossRefGoogle Scholar
- 143.M.H. Zhao, Z.-L. Wang, and S.X. Mao, Piezoelectric Characterization of Individual Zinc Oxide Nanobel Probed by Peizoresponse Force Microscope, Nanoletters 4, 587 (2004).Google Scholar
- 144.E. Evans, A. Leung, and D. Zhelev, Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens, J.Cell. Biol 122, 12951300(1993).CrossRefGoogle Scholar
- 145.T. Oliver, J. Lee, and K. Jacobson, ?, Semin. Cell Biol 5, 139 (1993).CrossRefGoogle Scholar
- 146.M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A.Z. Hrynkiewicz, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, Eur. Biophys J 28, 312 (1999).PubMedCrossRefGoogle Scholar
- 147.W.H. Goldmann and R.M. Ezzell, Viscoelasticity in wild-type and vinculindeficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology, Experimental Cell Research 226, 234 (1996).PubMedCrossRefGoogle Scholar
- 148.W.H. Goldmann, R. Galneder, M. Ludwig, W. Xu, E.D. Adamson, N. Wang, and R.M. Ezzell, Differences in elasticity of vinculin-deficient F( cells measured by magnetometry and atomic force microscopy, Experimental Cell Research 239, 235 (1998).PubMedCrossRefGoogle Scholar
- 149.W.H. Goldmann, R. Galneder, M. Ludwig, A. Kromm, and R.M. Ezzell, Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy, FEBS Letters 424, 139 (1998).PubMedCrossRefGoogle Scholar
- 150.H.G. Hansma, Surface Biology of DNA by Atomic Force Microscopy, Annu. Rev. Phys. Chem 52, 71 (2001).PubMedCrossRefGoogle Scholar
- 151.J.L. Alonso, and W.H. Goldmann, Feeling the forces: atomic force microscopy in cell biology, Life Sciences 72, 2553 (2003).PubMedCrossRefGoogle Scholar
- 152.A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, and R.M. Simmons, Single-Molecule Biomechanics with Optical Methods, Science 283, 1689 (1999).PubMedADSCrossRefGoogle Scholar
- 153.E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E.D. Fabrizio, Biological samples micro-manipulation by means of optical tweezers, Microelectronic Engineering 78–79, 575 (2005).CrossRefGoogle Scholar
- 154.F. Lopez, A. Lundkvist, M. Balooch, D. Haupt, J. Kinney, S. Oesterle, P. Fitzgerald, and P. Yock, Plaque extrusion during balloon angioplasty: New evidence from x-ray microtomography, JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY 29, 7491 (1997).Google Scholar
- 155.S. Habelitz, S.J. Marshall, G.W. Marshall, and M. Balooch, Mechanical properties of human dental enamel on the nanometre scale, ARCHIVESOFORAL BIOLOGY 46, 173 (2001).Google Scholar
- 156.S. Habelitz, G.W. Marshall, M. Balooch, and S.J. Marshall, Nanoindentation and storage of teeth, JOURNAL OF BIOMECHANICS 35, 995 (2002).PubMedCrossRefGoogle Scholar
- 157.J. Kinney, M. Balooch, S. Marshall, G.W. Marshall, and T. Weihs, Hardness and Young’s modulus of human peritubular and intertubular dentine, ARCHIVES OF ORAL BIOLOGY 41, 9 (1996).PubMedCrossRefGoogle Scholar
- 158.T.T. Perkins, D.E. Smith, R.G. Larson, and S. Chu, Stretching of a single tethered polymer in a uniform-flow, Science 268, 83 (1995).PubMedADSCrossRefGoogle Scholar
- 159.P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viory, D. Chatenay, and F. Caron, DNA: An Extensible Molecule, Science 271, 792 (1996).PubMedADSCrossRefGoogle Scholar
- 160.S.B. Smith, Y. Cui, and C. Bustamante, Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules, Science 271, 795 (1996).PubMedADSCrossRefGoogle Scholar
- 161.R.M. Simmons, J.T. Finer, S. Chu, and J. Spudich, Quantitative measurements of force and displacement using an optical trap, Biophys. J. 70, 1813 (1996).PubMedCrossRefGoogle Scholar
- 162.M.D. Wang, H. Yin, R. Landick, J. Gelles, and S.M. Block, Stretching DNA with optical tweezers, Biophys. J. 72, 1335 (1997).PubMedCrossRefGoogle Scholar
- 163.S.B. Smith, Y. Cui, A.C. Hausrath, and C. Bustamante, ?, Biophys. J. 68,A250 (1995).Google Scholar
- 164.P. Cizeau and J.-L. Viovy, Modeling extreme extension of DNA, Biopolymers 42, 383 (1997).CrossRefGoogle Scholar
- 165.A. Ahsan, J. Rudnick, and R. Bruinsma, Elasticity theory of the B-DNA to S-DNA transition, Biophys. J. 74, 132 (1998).PubMedCrossRefGoogle Scholar
- 166.M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H.E. Gaub, How strong is a covalent bond?, Science 283, 1727 (1999).PubMedADSCrossRefGoogle Scholar
- 167.D. Bensimon, A.J. Simon, V. Croquette, and A. Bensimon, Stretching DNA with a receding meniscus-experiments and models, Phys. Rev. Lett. 74, 4754(1995).PubMedADSCrossRefGoogle Scholar
- 168.O. Kratky and G. Porod, X-ray investigation of dissolved chain molecules, Rec.Trav.Chim.Pays.Bas 68, 1106 (1949).CrossRefGoogle Scholar
- 169.C. Bustamante, Z. Bryant, and S.B. Smith, Ten years of tension: single-molecule DNA mechanics, Nature 421, 423 (2003).PubMedADSCrossRefGoogle Scholar
- 170.J. Zlatanova and S.H. Leuba, Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level, Biochem. Cell Biol 81, 151 (2003).PubMedCrossRefGoogle Scholar
- 171.G. Lee, L. Chrisey, and R. Colton, Direct measurement of the forces between complementary strands of DNA, Science 266, 771 (1994).PubMedADSCrossRefGoogle Scholar
- 172.T. Strunz, K. Oroszlan, R. Schafer, and H.J. Guntherodt, Dynamic force spectroscopy of single DNA molecules, Proc. Natl. Acad. Sci. USA 96, 11277 (1999).PubMedADSCrossRefGoogle Scholar
- 173.H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H.E. Gaub, Mechanical stability of single DNA molecules, Biophys. J. 78, 1997 (2000).PubMedCrossRefGoogle Scholar
- 174.M. Rief, H. Clausen-Schaumann, and H.E. Gaub, Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol. 6, 346 (1999).PubMedCrossRefGoogle Scholar
- 175.N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, Nanoscale vibrational analysis of single-walled carbon nanotubes, J. Am. Chem. Soc. 127, 2533.Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2007