Advertisement

NanoMechanics: Elasticity in Nano-Objects

  • Lina Merchan
  • Robert Szoszkiewicz
  • Elisa Riedo
Part of the NanoScience and Technology book series (NANO)

Keywords

Atomic Force Microscope Optical Tweezer Hertz Model Atomic Force Microscope Experiment Magnetic Tweezer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    Z.W. Pan, Z.R. Dai, and Z.L. Wang, Nanobelts of Semiconducting Oxides, Science 291, 1947 (2001).PubMedADSCrossRefGoogle Scholar
  3. 3.
    X. Duan, Y. Huang, Y. Cui, J.F. Wang, and C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66 (2001).PubMedADSCrossRefGoogle Scholar
  4. 4.
    R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, Single-and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447 (1998).ADSCrossRefGoogle Scholar
  5. 5.
    C. Gómez-Navarro, P. J. d. Pablo, and J. Gómez-Herrero, Radial electromechanical properties of carbon nanotubes, Adv. Mater. 16, 549 (2004).CrossRefGoogle Scholar
  6. 6.
    B. Cappella and G. Dietler, Force-distance curves by atomic force microscopy, Surf. Sci. Rep. 34, 1 (1999).CrossRefGoogle Scholar
  7. 7.
    H.J. Hertz, On the contact of elastic solids, Reine Angew. Math 92, 156 (1882).Google Scholar
  8. 8.
    M. Radmacher, M. Fritz, and P.K. Hansma, Imaging soft samples with the atomic-force microscope-gelatin in water and propanol, Biophys. J. 69, 264(1995).PubMedCrossRefGoogle Scholar
  9. 9.
    H.W. Wu, T. Kuhn, and V.T. Moy, Mechanical properties of l929 cells measured by atomic force microscopy: Effects of anticytoskeletal drugs and membrane crosslinking, Scanning 20, 389 (1998).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, and P.K. Hansma, Measuring the Viscoelastic Properties of Human Platelets with the Atomic Force Microscope, Biophysical Journal 70, 556 (1996).PubMedCrossRefGoogle Scholar
  11. 11.
    B.J. Briscoe, K.S. Sebastian, and M.J. Adams, The effect of indenter geometry on the elastic response to indentation, J. Phys. D 27, 156 (1994).CrossRefGoogle Scholar
  12. 12.
    A.B.M. et al., ?, J. Biochem 34, 1545 (2001).Google Scholar
  13. 13.
    F. Rico, P. Roca-Cusachs, N. Gavara, R. Farré, M. Rotger, and D. Navajas, Probing mechanical properties of living cells by atomic force microscopy with blunted pyramidal cantilever tips, Physical Review E 72, 021914 (2005).ADSCrossRefGoogle Scholar
  14. 14.
    B.V. Derjaguin, V.M. Muller, and Y.P.T. Toporov, Effect of contact deformations on adhesion of particles, J. Colloid Interface Sci. 53, 314 (1975).CrossRefGoogle Scholar
  15. 15.
    K.L. Johnson, K. Kendall, and A.D. Roberts, Surface energy and contact of elastic solids, Proc. R. Soc. A 324, 301 (1971).ADSCrossRefGoogle Scholar
  16. 16.
    D. Maugis and H.M. Pollock, Surface forces, deformation and adherence at metal microcontacts, ActaMetall 32, 1323 (1984).Google Scholar
  17. 17.
    K. Shull, Contact mechanics and the adhesion of soft solids, MATERIALS SCIENCE & ENGINEERING R-REPORTS 36, 1 (2002).CrossRefGoogle Scholar
  18. 18.
    J.R. Barber and M. Ciavarella, Contact mechanics, INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES 37, 29 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Schmauder, Computational mechanics, ANNUAL REVIEW OF MATERIALS RESEARCH 32, 437 (2002).CrossRefGoogle Scholar
  20. 20.
    C. Tsakmakis, Description of plastic anisotropy effects at large deformations — Part I: restrictions imposed by the second law and the postulate of Il’iushin, INTERNATIONAL JOURNAL OF PLASTICITY 20, 167 (2004).zbMATHCrossRefGoogle Scholar
  21. 21.
    I. Kragelsky, M. Dobychin, and V. Kombalov, Friction and wear calculation methods (New York: Pergamon Press, ADDRESS, 1982).Google Scholar
  22. 22.
    J. Greenwood and J. Williamson, Contact of nominally flat surfaces, Proc.Roy.Soc.Lond. A295, 300 (1966).ADSGoogle Scholar
  23. 23.
    P. Nayak, Random process model of rough surfaces, ASME J Lubr Tecnol 93,398 (1971).CrossRefGoogle Scholar
  24. 24.
    J. Ogilvy, Numerical simulations of friction between contacting rough surfaces, J.Phys. D. 24, 2098 (1991).ADSCrossRefGoogle Scholar
  25. 25.
    J. Sugimura, Stochastic modeling of surface roughness, JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS 43, 933 (1998).Google Scholar
  26. 26.
    P. Meakin, The growth of rough surfaces and interfaces, PHYSICS REPORTSREVIEW SECTION OF PHYSICS LETTERS 235, 189 (1993).ADSGoogle Scholar
  27. 27.
    J. Gao, W.D. Luedtke, D. Gourdon, M. Ruths, J.N. Israelachvili, and U. Landman, Frictional forces and Amontons’ law: From the molecular to the macroscopic scale, JOURNAL OF PHYSICAL CHEMISTRY B 108, 3410 (2004).CrossRefGoogle Scholar
  28. 28.
    A. Majumdar and B. Bhushan, Fractal Model of Elastic-Plastic Contact Between Rough Surfaces, Journal of Tribology-Transactions of the ASME 113,1 (1991).CrossRefGoogle Scholar
  29. 29.
    H. Zahouani, R. Vargiolu, and J.L. Loubet, Fractal models of surface topography and contact mechanics, Math. Comput.Modell. 28, 517 (1998).zbMATHCrossRefGoogle Scholar
  30. 30.
    W. Yan and K. Komvopoulos, Contact Analysis of Elastic-Plastic fractal surfaces, J. Appl. Phys. 84, 3617 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    J.C. Chung and J.F. Lin, Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces, Transactions of the ASME 126, 646 (2004).CrossRefGoogle Scholar
  32. 32.
    B.N.J. Persson, Elastoplastic Contact between Randomly Rough Surfaces, Physical Review Letters 87, 116101 (2001).PubMedADSCrossRefGoogle Scholar
  33. 33.
    K.N.G. Fuller and D. Tabor, Effect of surface-roughness on adhesion of elastic solids, Proc.R.Soc.Lond A 345, 327 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    B.N.J. Persson and E. Tosatti, The effect of surface roughness on the adhesion of elastic solids, Journal of Chemical Physics 115, 5597 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    R. Buzio, C. Boragno, and U. Valbusa, Contact mechanics and friction of fractal surfaces probed by atomic force microscopy, Wear 254, 917 (2003).CrossRefGoogle Scholar
  36. 36.
    B. Luan and M. Robbins, The breakdown of continuum models for mechanical contacts, Nature 435, 929 (2005).PubMedADSCrossRefGoogle Scholar
  37. 37.
    O. Miesbauer, M. Gotzinger, and W. Peukert, Molecular dynamics simulations of the contact between two NaCl nano-crystals: adhesion, jump to contact and indentation, Nanotechnology 14, 371 (2003).ADSCrossRefGoogle Scholar
  38. 39.
    L.-O. Heim, M. Kappl, and H.-J. Butt, Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements, Langmuir 20,2760 (2004).PubMedCrossRefGoogle Scholar
  39. 40.
    J. Hutter, Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements, Langmuir 21, 2630 (2005).PubMedCrossRefGoogle Scholar
  40. 41.
    T.-D. Li, J. Gao, R. Szoszkiewicz, U. Landman, and E. Riedo, Water molecules confined in sub-nanometer gaps, submitted to Nature (2005).Google Scholar
  41. 42.
    S. Garcia-Manyes, A. Guell, P. Gorostiza, and F. Sanz, Nanomechanics of silicon surfaces with atomic force microscopy: An insight to the first stages of plastic deformation, J. Chem. Phys. 123, 114711 (2005).PubMedCrossRefGoogle Scholar
  42. 43.
    M. Rost, L. Crama, P. Schakel, E. van Tol, G. van Velzen-Williams, C. Overgauw, H. ter Horst, H. Dekker, B. Okhuijsen, M. Seynen, A. Vijftigschild, P. Han, A. Katan, K. Schoots, R. Schumm, W. van Loo, T.H. Oosterkamp, and J. Frenken, Scanning probe microscopes go video rate and beyond, Rev. Sci. Instr. 76, 053710 (2005).CrossRefGoogle Scholar
  43. 44.
    B. Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Heidelberg, 2004).CrossRefGoogle Scholar
  44. 45.
    A. Kueng, C. Kranz, A. Lugstein, E. Bertagnolli, and B. Mizaikoff, AFM-Tip-Integrated Amperometric Microbiosensors: High-Resolution Imaging of Membrane Transport, Angewandte Chemie Int. Ed. 44, 3419 (2005).CrossRefGoogle Scholar
  45. 46.
    E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971 (1997).CrossRefGoogle Scholar
  46. 47.
    P. Poncharal, Z.L. Wang, D. Urgarte, and W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283,1513 (1999).PubMedADSCrossRefGoogle Scholar
  47. 48.
    J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.W. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, and L. Forró, Elastic and shear moduli of single-walled carbon nanotube rope, Phys. Rev. Lett. 82, 944 (1999).ADSCrossRefGoogle Scholar
  48. 49.
    J.H. Song, X. Wang, E. Riedo, and Z. Wang, Elastic Property of Vertically Aligned Nanowires, Nano Letters 5, 1954 (2005).PubMedCrossRefGoogle Scholar
  49. 50.
    W. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments, Journal of Materials Research 7, 1564 (1992).ADSCrossRefGoogle Scholar
  50. 51.
    W. Oliver, Alternative technique for analyzing instrumented indentation data, Journal of Materials Research 16, 3202 (2001).ADSCrossRefGoogle Scholar
  51. 52.
    J. Pethica, R. Hutchings, and W. Oliver, Hardness measurement at penetration depths as small as 20-nm, Philosophical Magazine A 48, 593 (1983).CrossRefGoogle Scholar
  52. 53.
    E.T. Lilleodden, W. Bonin, J. Nelson, J.T. Wyrobek, and W.W. Gerberich, In-situ imaging of Mu-N load indents into gas, J. of Mat. Res, 10, 2162 (1995).ADSCrossRefGoogle Scholar
  53. 54.
    C. Schuh, J. Mason, and A. Lund, Quantitative Insight into Dislocation Nucleation from High-temperature Nanoindentation Experiments, Nature Materials 4, 617 (2005).PubMedADSCrossRefGoogle Scholar
  54. 55.
    N. Burnham and R. Colton, J. Vac. Sci. Tech. A 7, 2906 (1989).ADSCrossRefGoogle Scholar
  55. 56.
    T. Bell, J. Field, and M. Swain, Elastic plastic characterization of thin-films with spherical indentation, Thin Solid Films 220, 289 (1992).CrossRefGoogle Scholar
  56. 57.
    C.A. Clifford and M. Seah, Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation, Appl. Surf. Sci. 252, 1915 (2005).CrossRefGoogle Scholar
  57. 58.
    T. Strick, J.-F. Allemand, V. Croquette, and D. Bensimon, Twisting and stretching single DNA molecules, Prog. in Biophys. & Mol. Biol. 74, 115(2000).CrossRefGoogle Scholar
  58. 59.
    S.B. Smith, L. Finzi, and C. Bustamante, Direct Mechanical Measurements of the Elasticity of Single DNA Molecules by Using Magnetic Beads, Science 258, 1122 (1992).PubMedADSCrossRefGoogle Scholar
  59. 60.
    T. Strick, J.-F. Allemand, D. Bensimon, and V. Croquette, Behavior of supercoiled DNA, Biophys. J. 74, 2016 (1998).PubMedCrossRefGoogle Scholar
  60. 61.
    F. Assi, R. Jenks, J. Yang, C. Love, and M. Prentiss, Massively parallel adhesion and reactivity measurements using simple and inexpensive magnetic tweezers, J. Appl. Phys. 92, 5584 (2002).ADSCrossRefGoogle Scholar
  61. 62.
    A. Bausch, F. Ziemann, A. Boulbitch, K. Jacobson, and E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry, Biophys. J. 75, 2038 (1995).CrossRefGoogle Scholar
  62. 63.
    N. Wang, J. Butler, and D. Ingber, Mechanotransduction across the cell-surface and through the cytoskeleton, Science 260, 1124 (1993).PubMedADSCrossRefGoogle Scholar
  63. 64.
    C. Haber and D. Wirtz, Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instr. 71, 4561 (2000).ADSCrossRefGoogle Scholar
  64. 65.
    K. Svoboda and S. Block, Optical trapping of metallic Rayleigh particles, Opt. Lett. 19, 930 (1994).ADSCrossRefGoogle Scholar
  65. 66.
    P. Ke and M. Gu, Characterization of trapping force on metallic Mie particles, Appl. Opt. 38, 160 (1999).ADSCrossRefGoogle Scholar
  66. 67.
    L. Chislain, N. Switz, and W. Webb, Measurements of small forces using and optical trap, Rev. Sci. Instr. 65, 2762 (1994).ADSCrossRefGoogle Scholar
  67. 68.
    R. Litvinov, H. Shuman, J. Bennett, and J. Weisel, Binding strength and activation state of single fibrinogen-integrin pairs on living cells, Proc. Natl. Acad. Sci. 99, 7426 (2002).PubMedADSCrossRefGoogle Scholar
  68. 69.
    F. Gittes and C. Schmidt, Signals and noise in micromechanical measurements, Methods Cell. Biol. 55, 129 (1998).PubMedCrossRefGoogle Scholar
  69. 70.
    A. Pralle, M. Prummer, E. Florin, E. Stelzer, and J. Horber, Three-dimensional high-resolution particle tracking for optical tweezers by forward scattered light, Microsc. Res. Tech. 44, 378 (1999).PubMedCrossRefGoogle Scholar
  70. 71.
    D. Grier, A revolution in optical manipulation, Nature 424, 810 (2003).PubMedADSCrossRefGoogle Scholar
  71. 72.
    V. Bangert and P. Mansfield, Magnetic-field gradient coils for NMR imaging, J. Phys. E 15, 235 (1982).ADSCrossRefGoogle Scholar
  72. 73.
    Y. Liu, D. Cheng, G. Sonek, M. Berns, C. Chapman, and B. Tromberg, Evidence for localized cell heating induced by infrared optical tweezers, Biophys. J. 68, 2137 (1995).PubMedCrossRefGoogle Scholar
  73. 74.
    A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles, Opt. Lett. 11, 288 (1986).ADSCrossRefGoogle Scholar
  74. 75.
    Y. Harada and T. Asakura, Radiation forces on a dielectric sphere in the Rayleigh scattering regime, Opt. Commun. 124, 529 (1996).ADSCrossRefGoogle Scholar
  75. 76.
    E. Dufresne and D. Grier, Optical tweezer arrays and optical substrates created with diffractive optics, Rev. Sci. Instr. 69, 1974 (1998).ADSCrossRefGoogle Scholar
  76. 77.
    L. Paterson, M. MacDonald, J. Arlt, W. Sibbett, P. Bryant, and K. Dholakia, Controlled rotation of optically trapped microscopic particles, Science 292, 912 (2001).PubMedADSCrossRefGoogle Scholar
  77. 78.
    V. Bingelyte, J. Leach, J. Courtial, and M. Padgett, Optically controlled three-dimensional rotation of microscopic objects, Appl. Phys. Lett. 82, 829 (2003).ADSCrossRefGoogle Scholar
  78. 79.
    J. Curtis, B. Koss, and D. Grier, Dynamic holographic optical tweezers, Opt. Commun. 207, 169 (2002).ADSCrossRefGoogle Scholar
  79. 80.
    J. Curtis and D. Grier, Structure of optical vortices, Phys. Rev. Lett. 90, 133901 (2003).PubMedADSCrossRefGoogle Scholar
  80. 81.
    L. Sacconi, G. Romano, R. Ballerini, M. Capitanio, M.D. Pas, M. Giuntini, D. Dunlap, L. Finzi, and F. Pavone, Three-dimensional magneto-optic trap for micro-object manipulation, Opt. Lett. 26, 1359 (2001).ADSCrossRefGoogle Scholar
  81. 82.
    M. Friese, T. Nieminen, N. Heckenberg, and H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394, 348 (1998).ADSCrossRefGoogle Scholar
  82. 83.
    A.L. Porta and M. Wang, Optical torque wrench: Angular trapping, rotation, and torque detection of quartz microparticles, Phys. Rev. Lett. 92, 190801 (2004).PubMedCrossRefGoogle Scholar
  83. 84.
    J. Joykutty, V. Mathur, V. Venkataraman, and V. Natarajan, Direct measurement of the oscillation frequency in an optical-tweezers trap by parametric excitation, Phys. Rev. Lett. 95, 193902 (2005).PubMedADSCrossRefGoogle Scholar
  84. 85.
    P. Maivald, H.J. Butt, S.A.C. Gould, C.B. Prater, B. Drake, J.A. Gurley, V.B. Elings, and P.K. Hansma, Using force modulation to image surface elasticities with the atomic force microscope, Nanotechnology 2, 103 (1991).ADSCrossRefGoogle Scholar
  85. 86.
    E. Meyer, R. Overney, K. Dransfeld, and T. Gyalog, Friction and Rheology on the Nanometer Scale (World Scientific, Singapore, 2002).Google Scholar
  86. 87.
    R.W. Carpick, D.F. Ogletree, and M. Salmeron, Lateral stiffness: A new nanomechanical measurement for the determination of shear strengths with friction force microscopy, Appl. Phys. Lett. 70, 1548 (1997).ADSCrossRefGoogle Scholar
  87. 88.
    M.A. Lantz, S. J. O’Shea, M.E. Welland, and K.L. Johnson, Simultaneous force and conduction measurements in atomic force microscopy, Phys. Rev. B 55(56), 10776 (15345) (1997).ADSCrossRefGoogle Scholar
  88. 91.
    M.F. Yu, T. Kowaleweski, and R.S. Ruoff, Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force, Phys. Rev. Lett. 85, 1456 (2000).PubMedADSCrossRefGoogle Scholar
  89. 92.
    W. Shen, B. Jiang, B.S. Han, and S.-s. Xie, Investigation of the radial compression of carbon nanotubes with a scanning probe microscope, Phys. Rev. Lett. 84, 3634 (2000).PubMedADSCrossRefGoogle Scholar
  90. 93.
    A.P. Boresi and O.M. Sidebottom, Advanced Mechanics of Materials (John Wiley & Sons, 5th Ed., ADDRESS, 1993).Google Scholar
  91. 94.
    G. Briggs, Acoustic microscopy (Oxford University Press, Oxford, 1992).Google Scholar
  92. 95.
    B. Cretin and F. Stahl, Scanning microdeformation microscopy, Appl. Phys. Lett. 62, 829 (1993).ADSCrossRefGoogle Scholar
  93. 96.
    U. Rabe and W. Arnold, Acoustic microscopy by atomic force microscopy, Appl. Phys. Lett. 64, 1493 (1994).ADSCrossRefGoogle Scholar
  94. 97.
    E. Dupas, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 2000.Google Scholar
  95. 98.
    N. Burnham, A. Kulik, G. Gremaud, P. Gallo, and F. Oulevey, Scanning local-acceleration microscopy, J. Vac. Sci. Techn. B 14, 794 (1996).CrossRefGoogle Scholar
  96. 99.
    F. Oulevey, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, 1999.Google Scholar
  97. 100.
    G. Rochat, Y. Leterrier, C. Plummer, J. Manson, R. Szoszkiewicz, and A. Kulik, Effect of substrate crystalline morphology on the adhesion of plasma enhanced chemical vapor deposited thin silicon oxide coatings on polyamide, J. Appl. Phys. 95, 5429 (2004).ADSCrossRefGoogle Scholar
  98. 102.
    O. Kolosov and K. Yamanaka, Nonlinear detection of ultrasonic vibrations in an atomic force microscope, Jpn. J. Appl. Phys. 32, 22 (1993).CrossRefGoogle Scholar
  99. 103.
    R. Szoszkiewicz, B. Bhushan, B.D. Huey, A. Kulik, and G. Gremaud, Correlations between Adhesion Hysteresis and Friction at Molecular Scales, J. Chem. Phys. 122.Google Scholar
  100. 104.
    R. Szoszkiewicz, A. Kulik, and G. Gremaud, Quantitative measure of nanoscale adhesion hysteresis by Ultrasonic Force Microscopy, J. Chem. Phys. 122, 134706 (2005).PubMedCrossRefGoogle Scholar
  101. 105.
    R. Szoszkiewicz, B. Bhushan, B.D. Huey, A. Kulik, and G. Gremaud, Adhesion hysteresis and friction at nanometer and micrometer lengths, accepted in J. Appl. Phys. (2006).Google Scholar
  102. 106.
    T. Cuberes, G. Briggs, and O. Kolosov, AFM-modes for non-linear detection of ultrasonic vibration (Oxford University Press, Oxford, 1998).Google Scholar
  103. 107.
    F. Dinelli, M. Castell, D. Ritchie, N. Mason, G. Briggs, and O. Kolosov, Mapping surface elastic properties of stiff and compliant materials on the nanoscale using ultrasonic force microscopy, Phil. Mag. A 80, 2299 (2000).ADSCrossRefGoogle Scholar
  104. 108.
    F. Dinelli, N. Burnham, A. Kulik, P. Gallo, G. Gremaud, and W. Benoit, Mechanical properties studied at the nanoscale using Scanning Local-Acceleration Microscopy (SLAM), J. Phys IV 6, 731 (1996).Google Scholar
  105. 109.
    K. Yamanaka, UFM observation of lattice defects in highly oriented pyrolytic graphite, Thin Solid Films 273, 116 (1996).CrossRefGoogle Scholar
  106. 110.
    O. Kolosov, M.R. Castell, C.D. Marsh, and G.A.D. Briggs, Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy, Phys. Rev. Lett. 81, 1046 (1998).ADSCrossRefGoogle Scholar
  107. 111.
    F. Dinelli, H.E. Assender, and N. Takeda, Elastic mapping of heterogeneous nanostructures with ultrasonic force microscopy (UFM), Surf. Interf. Anal. 27, 562 (1999).CrossRefGoogle Scholar
  108. 112.
    K. Porfyrakis, O. Kolosov, and H. Assender, AFM and UFM surface characterization of rubber-toughened poly(methyl methacrylate) samples, J. Appl. Pol. Sci. 82, 2790 (2001).CrossRefGoogle Scholar
  109. 113.
    H. Geisler, M. Hoehn, M. Rambach, M. Meyer, E. Zschech, M.M.A. Romanov, M. Bobeth, W. Pompe, and R. Geer, Elastic mapping of sub-surface defects by ultrasonic force microscopy: limits of depth sensitivity, Proc. of Conf. on Micr. Semicond. Mat. 2001 169, 527 (2001).Google Scholar
  110. 114.
    D. Hurley, M. Kopycinska-Muller, A. Kos, and R. Geiss, Quantitative elastic property measurements at the nanoscale with atomic force acoustic microscopy, Adv. Eng. Mat. 7, 713 (2005).CrossRefGoogle Scholar
  111. 115.
    S. Amelio, A. Goldade, U. Rabe, V. Scherer, B. Bhushan, and W. Arnold, Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy, Thin Solid Films 392, 75 (2001).CrossRefGoogle Scholar
  112. 116.
    P. Avouris, J. Appenzeller, R. Martel, and S.J. Wind, Carbon nanotube electronics, Proc. IEEE 91, 1772 (2003).CrossRefGoogle Scholar
  113. 117.
    J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A 74, 339 (2002).ADSCrossRefGoogle Scholar
  114. 118.
    E.T. Thostenson, Z. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol. 61, 1899 (2001).CrossRefGoogle Scholar
  115. 119.
    L. Roschier, R. Tarkiainen, M. Ahlskog, M. Paalanen, and P. Hakonen, Manufacture of single electron transistors using AFM manipulation on multiwalled carbon nanotubes, Microelectron. Eng. 61–62, 687 (2002).CrossRefGoogle Scholar
  116. 120.
    J.P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett. 79, 1297 (1997).ADSCrossRefGoogle Scholar
  117. 121.
    V.N. Popov and V.E.V. Doren, Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61, 3078 (2000).ADSCrossRefGoogle Scholar
  118. 122.
    Y. Xia, M.W. Zhao, Y.C. Ma, M.J. Ying, X.D. Liu, P.J. Liu, and L.M. Mei, Tensile strength of single-walled carbon nanotubes with defects under hydrostatic pressure, Phys. Rev. B 65, 155415 (2002).CrossRefGoogle Scholar
  119. 123.
    J.A. Elliot, J.K.W. Sandler, A.H. Windle, R.J. Young, and M.S.P. Shaffer, Collapse of single-wall carbon nanotubes is diameter dependent, Phys. Rev. Lett. 92, 095501 (2004).ADSCrossRefGoogle Scholar
  120. 124.
    M.H. Park, J.W. Jang, C.E. Lee, and C.J. Lee, Interwall support in double-walled carbon nanotubes studied by scanning tunneling microscopy, Appl. Phys. Lett. 86, 023110 (2005).CrossRefGoogle Scholar
  121. 125.
    T. Hertel, R.E. Walkup, and P. Avouris, Deformation of carbon nanotubes by surface can der Waals forces, Phys. Rev. B 58, 13870 (1998).ADSCrossRefGoogle Scholar
  122. 126.
    E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, and P.L. McEuen, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401(2003).PubMedADSCrossRefGoogle Scholar
  123. 127.
    S. Dag, O. Gulseren, S. Ciraci, and T. Yildirim, Electronic structure of the contact between carbon nanotube and metal electrodes, Appl. Phys. Lett. 83,3180 (2003).ADSCrossRefGoogle Scholar
  124. 128.
    P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, and R.E. Walkup, Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201 (1999).CrossRefGoogle Scholar
  125. 129.
    V. Lordi and N. Yao, Radial compression and controlled cutting of carbon nanotubes, J. Chem. Phys. 109, 2509 (1998).ADSCrossRefGoogle Scholar
  126. 130.
    L. Shen and J. Li, Transversely isotropic elastic properties of single-walled carbon nanotubes, Phys. Rev. B 69, 045414 (2004).ADSCrossRefGoogle Scholar
  127. 131.
    I. Palaci, S. Fedrigo, H. Brune, C. Klinke, M. Chen,, and E. Riedo, Radial Elasticity of Multiwalled Carbon Nanotubes, Phys. Rev. Lett. 94, 175502 (2005).PubMedADSCrossRefGoogle Scholar
  128. 132.
    B.T. Kelly, Physics of Graphite (PUBLISHER, ADDRESS, 1981).Google Scholar
  129. 133.
    Z.L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-From materials to nanodevices, Adv. Mater. 15, 432 (2003).CrossRefGoogle Scholar
  130. 134.
    M. Buongiorno-Nardelli, J.-L. Fattebert, D. Orlikowski, C. Roland, Q. Zhao, and J. Bernholc, Mechanical properties, defects and electronic behavior of carbon naotubes, Carbon 38, 1703 (2000).CrossRefGoogle Scholar
  131. 135.
    G. Zhang, M. Long, Z.-Z. Wu, and W.-Q. Yu, Mechanical properties of hepatocellular carcinoma cells, World Journal of Gastroenterology 8, 243 (2002).PubMedGoogle Scholar
  132. 136.
    H.F. Bettinger, T. Dumitrica, G.E. Scuseria, and B.I. Yakobson, Mechanically induced defects and stregth of BN nanotubes, Phys. Rev. B 65, 041406 (2002).ADSCrossRefGoogle Scholar
  133. 137.
    J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Mechanical properties of carbon nanotubes, Appl. Phys. A 69, 255 (1999).ADSCrossRefGoogle Scholar
  134. 138.
    J.P. Salvetat, A.J. Kulik, J.M. Bonard, and et al., Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes., Adv. Mater. 11, 161 (1999).CrossRefGoogle Scholar
  135. 139.
    L. Shen and J. Li, Transversely isotropic elastic properties of multiwalled carbon nanotubes, Phys. Rev. B 71, 035412 (2005).ADSCrossRefGoogle Scholar
  136. 140.
    L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater. 15, 464 (2003).CrossRefGoogle Scholar
  137. 141.
    P.X. Gao, Y. Ding, W. Mai, W.L. Hughes, C. Lao, and Z.L. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science 309, 1007 (2005).CrossRefGoogle Scholar
  138. 142.
    S.X. Mao, M. Zhao, and Z.L. Wang, Nanoscale mechanical behavior of individual semiconducting nanobelts, Appl. Phys. Lett. 83, 993 (2003).ADSCrossRefGoogle Scholar
  139. 143.
    M.H. Zhao, Z.-L. Wang, and S.X. Mao, Piezoelectric Characterization of Individual Zinc Oxide Nanobel Probed by Peizoresponse Force Microscope, Nanoletters 4, 587 (2004).Google Scholar
  140. 144.
    E. Evans, A. Leung, and D. Zhelev, Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens, J.Cell. Biol 122, 12951300(1993).CrossRefGoogle Scholar
  141. 145.
    T. Oliver, J. Lee, and K. Jacobson, ?, Semin. Cell Biol 5, 139 (1993).CrossRefGoogle Scholar
  142. 146.
    M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura, and A.Z. Hrynkiewicz, Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy, Eur. Biophys J 28, 312 (1999).PubMedCrossRefGoogle Scholar
  143. 147.
    W.H. Goldmann and R.M. Ezzell, Viscoelasticity in wild-type and vinculindeficient (5.51) mouse F9 embryonic carcinoma cells examined by atomic force microscopy and rheology, Experimental Cell Research 226, 234 (1996).PubMedCrossRefGoogle Scholar
  144. 148.
    W.H. Goldmann, R. Galneder, M. Ludwig, W. Xu, E.D. Adamson, N. Wang, and R.M. Ezzell, Differences in elasticity of vinculin-deficient F( cells measured by magnetometry and atomic force microscopy, Experimental Cell Research 239, 235 (1998).PubMedCrossRefGoogle Scholar
  145. 149.
    W.H. Goldmann, R. Galneder, M. Ludwig, A. Kromm, and R.M. Ezzell, Differences in F9 and 5.51 cell elasticity determined by cell poking and atomic force microscopy, FEBS Letters 424, 139 (1998).PubMedCrossRefGoogle Scholar
  146. 150.
    H.G. Hansma, Surface Biology of DNA by Atomic Force Microscopy, Annu. Rev. Phys. Chem 52, 71 (2001).PubMedCrossRefGoogle Scholar
  147. 151.
    J.L. Alonso, and W.H. Goldmann, Feeling the forces: atomic force microscopy in cell biology, Life Sciences 72, 2553 (2003).PubMedCrossRefGoogle Scholar
  148. 152.
    A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, and R.M. Simmons, Single-Molecule Biomechanics with Optical Methods, Science 283, 1689 (1999).PubMedADSCrossRefGoogle Scholar
  149. 153.
    E. Ferrari, V. Emiliani, D. Cojoc, V. Garbin, M. Zahid, C. Durieux, M. Coppey-Moisan, and E.D. Fabrizio, Biological samples micro-manipulation by means of optical tweezers, Microelectronic Engineering 78–79, 575 (2005).CrossRefGoogle Scholar
  150. 154.
    F. Lopez, A. Lundkvist, M. Balooch, D. Haupt, J. Kinney, S. Oesterle, P. Fitzgerald, and P. Yock, Plaque extrusion during balloon angioplasty: New evidence from x-ray microtomography, JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY 29, 7491 (1997).Google Scholar
  151. 155.
    S. Habelitz, S.J. Marshall, G.W. Marshall, and M. Balooch, Mechanical properties of human dental enamel on the nanometre scale, ARCHIVESOFORAL BIOLOGY 46, 173 (2001).Google Scholar
  152. 156.
    S. Habelitz, G.W. Marshall, M. Balooch, and S.J. Marshall, Nanoindentation and storage of teeth, JOURNAL OF BIOMECHANICS 35, 995 (2002).PubMedCrossRefGoogle Scholar
  153. 157.
    J. Kinney, M. Balooch, S. Marshall, G.W. Marshall, and T. Weihs, Hardness and Young’s modulus of human peritubular and intertubular dentine, ARCHIVES OF ORAL BIOLOGY 41, 9 (1996).PubMedCrossRefGoogle Scholar
  154. 158.
    T.T. Perkins, D.E. Smith, R.G. Larson, and S. Chu, Stretching of a single tethered polymer in a uniform-flow, Science 268, 83 (1995).PubMedADSCrossRefGoogle Scholar
  155. 159.
    P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viory, D. Chatenay, and F. Caron, DNA: An Extensible Molecule, Science 271, 792 (1996).PubMedADSCrossRefGoogle Scholar
  156. 160.
    S.B. Smith, Y. Cui, and C. Bustamante, Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules, Science 271, 795 (1996).PubMedADSCrossRefGoogle Scholar
  157. 161.
    R.M. Simmons, J.T. Finer, S. Chu, and J. Spudich, Quantitative measurements of force and displacement using an optical trap, Biophys. J. 70, 1813 (1996).PubMedCrossRefGoogle Scholar
  158. 162.
    M.D. Wang, H. Yin, R. Landick, J. Gelles, and S.M. Block, Stretching DNA with optical tweezers, Biophys. J. 72, 1335 (1997).PubMedCrossRefGoogle Scholar
  159. 163.
    S.B. Smith, Y. Cui, A.C. Hausrath, and C. Bustamante, ?, Biophys. J. 68,A250 (1995).Google Scholar
  160. 164.
    P. Cizeau and J.-L. Viovy, Modeling extreme extension of DNA, Biopolymers 42, 383 (1997).CrossRefGoogle Scholar
  161. 165.
    A. Ahsan, J. Rudnick, and R. Bruinsma, Elasticity theory of the B-DNA to S-DNA transition, Biophys. J. 74, 132 (1998).PubMedCrossRefGoogle Scholar
  162. 166.
    M. Grandbois, M. Beyer, M. Rief, H. Clausen-Schaumann, and H.E. Gaub, How strong is a covalent bond?, Science 283, 1727 (1999).PubMedADSCrossRefGoogle Scholar
  163. 167.
    D. Bensimon, A.J. Simon, V. Croquette, and A. Bensimon, Stretching DNA with a receding meniscus-experiments and models, Phys. Rev. Lett. 74, 4754(1995).PubMedADSCrossRefGoogle Scholar
  164. 168.
    O. Kratky and G. Porod, X-ray investigation of dissolved chain molecules, Rec.Trav.Chim.Pays.Bas 68, 1106 (1949).CrossRefGoogle Scholar
  165. 169.
    C. Bustamante, Z. Bryant, and S.B. Smith, Ten years of tension: single-molecule DNA mechanics, Nature 421, 423 (2003).PubMedADSCrossRefGoogle Scholar
  166. 170.
    J. Zlatanova and S.H. Leuba, Magnetic tweezers: a sensitive tool to study DNA and chromatin at the single-molecule level, Biochem. Cell Biol 81, 151 (2003).PubMedCrossRefGoogle Scholar
  167. 171.
    G. Lee, L. Chrisey, and R. Colton, Direct measurement of the forces between complementary strands of DNA, Science 266, 771 (1994).PubMedADSCrossRefGoogle Scholar
  168. 172.
    T. Strunz, K. Oroszlan, R. Schafer, and H.J. Guntherodt, Dynamic force spectroscopy of single DNA molecules, Proc. Natl. Acad. Sci. USA 96, 11277 (1999).PubMedADSCrossRefGoogle Scholar
  169. 173.
    H. Clausen-Schaumann, M. Rief, C. Tolksdorf, and H.E. Gaub, Mechanical stability of single DNA molecules, Biophys. J. 78, 1997 (2000).PubMedCrossRefGoogle Scholar
  170. 174.
    M. Rief, H. Clausen-Schaumann, and H.E. Gaub, Sequence-dependent mechanics of single DNA molecules, Nat. Struct. Biol. 6, 346 (1999).PubMedCrossRefGoogle Scholar
  171. 175.
    N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, Nanoscale vibrational analysis of single-walled carbon nanotubes, J. Am. Chem. Soc. 127, 2533.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Lina Merchan
    • 1
  • Robert Szoszkiewicz
    • 1
  • Elisa Riedo
    • 1
  1. 1.Schol of PhysicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations