Skip to main content

Axillary Lymph Node Status Evaluation in Breast Cancer Patients: Role of SPECT and Pinhole SPECT with Cationic Lipophilic Radiotracers

  • Chapter
Book cover Breast Cancer
  • 1815 Accesses

Abstract

The correct assessment of axillary lymph node status represents the most important goal in the preoperative phase of breast cancer patients since the presence of lymph node metastases together with primary tumor size can be considered, in the absence of distant metastatic localizations, the single most significant parameter to guide the therapeutic strategy and to better determine disease prognosis as well as serving as an indicator of the tumor ability to spread (Carter et al. 1989). In particular, the number of axillary metastatic nodes when it exceeds three is associated with a worse prognosis (Fisher et al. 1983; Carter et al. 1989; Saez et al. 1989). To date, the procedure of choice for pathological axillary status evaluation is represented by axillary lymph node dissection (ALND), which has a routine use in patients with newly ascertained invasive breast cancer in spite of its invasiveness and morbidity. However, ALND may not be necessary in many cases, in particular in early stage carcinomas with tumor size <10 mm and even more so when axillary clinical examination is negative, since in this case the percentage of lymph node metastases is very low. Moreover, even when axillary lymph node metastases are present, ALND may not affect the choice of adjuvant therapy and, apart from this, a change of treatment may give only a small survival benefit. Eventual complications and the costs of the procedure also have to be considered when the indication is equivocal. Thus, at present, the routine use of ALND is questionable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acton PD, Choi SR, Plössl K et al (2002) Quantification of dopamine transporters in the mouse brain using ultra-high resolution single-photon emission tomography. Eur J Nucl Med 29:691–698

    Article  CAS  Google Scholar 

  • Adler LP, Faulhaber PF, Schnur KC et al (1997) Axillary lymph node metastases: screening with [F-18] 2-deoxy-2-fluoro-D-glucose (FDG) PET. Radiology 203:323–327

    PubMed  CAS  Google Scholar 

  • Albertini JJ, Lyman GH, Cox C et al (1996) Lymphatic mapping and sentinel node biopsy in the patient with breast cancer. JAMA 276:1818–1822

    Article  PubMed  CAS  Google Scholar 

  • Alonso O, Martinez M, Delgado L et al (2003) Staging of regional lymph nodes in melanoma patients by means of 99mTc-MIBI scintigraphy. J Nucl Med 44: 1561–1565

    PubMed  Google Scholar 

  • Arbab AS, Koizumi K, Toyama K et al (1996) Uptake of technetium-99m-tetrofosmin, technetium-99m-MIBI and thallium-201 in tumor cell lines. J Nucl Med 37:1551–1556

    PubMed  CAS  Google Scholar 

  • Arbab AS, Koizumi K, Toyama K et al (1997) Ion transport systems in the uptake of 99Tcm-tetrofosmin, 99Tcm-MIBI and 201Tl in a tumor cell line. Nucl Med Commun 18:235–240

    Article  PubMed  CAS  Google Scholar 

  • Aziz A, Hashmi R, Ogawa Y et al (1999) Tc-99m-MIBI scintimammography; SPECT versus planar imaging Cancer Biother Radiopharm 14:495–500

    Article  PubMed  CAS  Google Scholar 

  • Bahk YW, Chung SK, Park YH et al (1998) Pinhole SPECT imaging in normal and morbid ankles. J Nucl Med 39:130–139

    PubMed  CAS  Google Scholar 

  • Ballinger JR, Bannerman J, Boxen I et al (1996) Technetium-99m-tetrofosmin as a substrate for P-glycoprotein: in vitro studies in multidrug-resistant breast tumor cells. J Nucl Med 37:1578–1582

    PubMed  CAS  Google Scholar 

  • Barranger E, Grahek D, Antoine M et al (2003) Evaluation of fluorodeoxyglucose positron emission tomography in the detection of axillary lymph node metastases in patients with early-stage breast cancer. Ann Surg Oncol 10:622–627

    Article  PubMed  Google Scholar 

  • Bennink RJ, van Montfrans C, de Jong WJ et al (2004) Imaging of intestinal lymphocyte homing by means of pinhole SPECT in a TNBS colitis mouse model. Eur J Nucl Med Mol Imaging 31: 93–101

    CAS  Google Scholar 

  • Bernard BF, Krenning EP, Breeman WA et al (1998) 99mTc-MIBI, 99mTc-tetrofosmin and 99mTc-Q12 in vitro and in vivo. Nucl Med Biol 25:233–240

    Article  PubMed  CAS  Google Scholar 

  • Boolbol SK, Fey JV, Borgen PI et al (2001) Intradermal isotope injection: a highly accurate method of lymphatic mapping in breast carcinoma. Ann Surg Oncol 8:20–24

    Article  PubMed  CAS  Google Scholar 

  • Booij J, de Bruin K, Habraken JBA et al (2002) Imaging of dopamine transporters in rats using high-resolution pinhole single-photon emission tomography. Eur J Nucl Med 29:1221–1224

    Article  CAS  Google Scholar 

  • Bootsma AH, van Eijck C, Shouten KK et al (1993) Somatostatin receptor-positive primary breast tumors: genetic, patient and tumor characteristic. Int J Cancer 28:357–362

    Article  Google Scholar 

  • Borgstein PJ, Pijpers R, Comans EF et al (1998) Sentinel lymph node biopsy in breast cancer: guidelines and pitfalls of lymphoscintigraphy and gamma probe detection. J Am Coll Surg 186:275–283

    Article  PubMed  CAS  Google Scholar 

  • Caner B, Kitapci M, Aras T et al (1991) Increased accumulation of hexakis (2-methoxyisobutylisonitrile) technetium (I) in osteosarcoma and its metastatic lymph nodes. J Nucl Med 32:1977–1978

    PubMed  CAS  Google Scholar 

  • Carter C, Allen C, Henson D (1989) Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases. Cancer 63:181–187

    Article  PubMed  CAS  Google Scholar 

  • Chiaramida P, Spanu A, Madeddu G (1998) 180° Pinhole (P) SPECT and 360° (C) SPECT spatial resolution. An experimental model. Q J Nucl Med 42(Suppl 1): 1

    Google Scholar 

  • Choi JY, Kim SE, Shin HJ et al (2000) Brain tumor imaging with 99mTc-tetrofosmin: comparison with 201Tl, 99mTc-MIBI, and 18F-fluorodeoxyglucose. J Neurooncol 46:63–70

    Article  PubMed  CAS  Google Scholar 

  • Cimitan M, Volpe R, Candiani E et al (1995) The use of thallium-201 in the preoperative detection of breast cancer: an adjunct to mammography and ultrasonography. Eur J Nucl Med 22:1110–1117

    Article  PubMed  CAS  Google Scholar 

  • Cox CE, Pendas S, Cox JM et al (1998) Guidelines for sentinel node biopsy and lymphatic mapping of patients with breast cancer. Ann Surg 226:645–653

    Article  Google Scholar 

  • Cwikla JB, Buscombe JR, Parbhoo SP et al (1998) Use of 99Tcm-MIBI in the assessment of patients with suspected recurrent breast cancer. Nucl Med Commun 19:649–655

    Article  PubMed  CAS  Google Scholar 

  • Danforth DN Jr, Aloj L, Carrasquillo JA et al (2002) The role of 18F-FDG-PET in the local/regional evaluation of women with breast cancer. Breast Cancer Res Treat 75: 135–146

    Article  PubMed  CAS  Google Scholar 

  • Fahey FH, Grow KL, Webber RL et al (2001) Emission tunedaperture computed tomography: a novel approach to scintimammography. J Nucl Med 42: 1121–1127

    PubMed  CAS  Google Scholar 

  • Fisher B, Bauer M, Wickerham DL et al (1983) Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer: an NSABP update. Cancer 52:1551–1557

    Article  PubMed  CAS  Google Scholar 

  • Flett MM, Going JJ, Stanton PD et al (1998) Sentinel node localization in patient with breast cancer. Br J Surg 85:991–993

    Article  PubMed  CAS  Google Scholar 

  • Giuliano AE, Kirgan DM, Guenther JM et al (1994) Lymphatic mapping and sentinel lymphadenectomy for breast cancer. Ann Surg 220:391–398

    Article  PubMed  CAS  Google Scholar 

  • Greco M, Crippa F, Agresti R et al (2001) Axillary lymph node staging in breast cancer by 2-fluoro-2-deoxy-D-glucosepositron emission tomography: clinical evaluation and alternative management. J Natl Cancer Inst 93:630–635

    Article  PubMed  CAS  Google Scholar 

  • Gulec SA, Moffat FL, Carrol RG et al (1998) Sentinel node localization in early breast cancer. J Nucl Med 39:1388–1393

    PubMed  CAS  Google Scholar 

  • Guller U, Nitzsche EU, Schirp U et al (2002) Selective axillary surgery in breast cancer patients based on positron emission tomography with 18F-fluoro-2-deoxy-D-glucose: not yet! Breast Cancer Res Treat 71:171–173

    Article  PubMed  Google Scholar 

  • Haigh PI, Hansen NM, Giuliano AE et al (2000) Factors affecting sentinel node localization during preoperative breast lymphoscintigraphy. J Nucl Med 41:1682–1688

    PubMed  CAS  Google Scholar 

  • Howart D, Sillar R, Clark D et al (1999) Technetium-99m sestamibi scintimammography: the influence of histopatological characteristics, lesion size and the presence of carcinoma in situ in the detection of breast carcinoma. Eur J Nucl Med 26:1475–1481

    Article  Google Scholar 

  • Hubner KF, Smith GT, Thie JA et al (2000) The potential of F-18-FDG PET in breast cancer. Detection of primary lesions, axillary lymph node metastases, or distant metastases. Clin Positron Imaging 3:197–205

    Article  PubMed  Google Scholar 

  • Ivancevic VV, Wolter A, Winzer K et al (2000) Intraindividual comparison of F-18-fluorodeoxyglucose and Tc-99m-tetrofosmin in planar scintimammography and SPECT. Clin Positron Imaging 3:17–29

    Article  PubMed  Google Scholar 

  • Kao CH, Wang SJ, Lin WY et al (1993) Differentiation of single solid lesions in the lungs by means of single-photon emission tomography with technetium methoxyisobutylisonitrile. Eur J Nucl Med 20:249–254

    PubMed  CAS  Google Scholar 

  • Keleman PR, Lowe V, Phillips N (2002) Positron emission tomography and sentinel lymph node dissection in breast cancer. Clin Breast Cancer 3: 73–77

    Article  Google Scholar 

  • Khalkhali I, Mena I, Diggles L (1994) Review of imaging techniques for the diagnosis of breast cancer: a new role of prone scintimammography using technetium-99m sestamibi. Eur J Nucl Med 21:357–362

    Article  PubMed  CAS  Google Scholar 

  • Khalkhali I, Cutrone J, Mena I et al (1995) Technetium-99m-sestamibi scintimammography of breast lesions: clinical and pathological follow-up. J Nucl Med 36:1784–1789

    PubMed  CAS  Google Scholar 

  • Khalkhali I, Villanueva-Meyer J, Edell SL et al (2000) Diagnostic accuracy of 99mTc-seatamibi breast imaging: multicenter trial results. J Nucl Med 41:1973–1979

    PubMed  CAS  Google Scholar 

  • Keshtgar MRS and Ell PJ (2002) Clinical role of sentinel-lymphnode biopsy in breast cancer. Lancet Oncol 3:105–110

    Article  PubMed  Google Scholar 

  • Kostakoglu L, Ruacan S, Ergun EL et al (1998) Influence of the heterogeneity of P-glycoprotein expression on technetium-99m-MIBI uptake in breast cancer. J Nucl Med 39:1021–1026

    PubMed  CAS  Google Scholar 

  • Krag DN, Weaver DL, Ashikaga T et al (1998) The sentinel node in breast cancer. A multicenter validation study. N Engl J Med 339:941–946

    Article  PubMed  CAS  Google Scholar 

  • Krausz Y, Wilk M, Saliman F et al (1997) Role of high-resolution pinhole tomography in the evaluation of thyroid abnormalities. Thyroid 7:847–852

    Article  PubMed  CAS  Google Scholar 

  • Lee JK, Tsai SC, Ho YJ et al (2001) Technetium-99m tetrofosmin scintigraphy for detecting malignant lymphomas. Anticancer Res 21:1509–1513

    PubMed  CAS  Google Scholar 

  • Lind P, Gallowitsch HJ, Langsteger W et al (1997) Technetium-99m-tetrofosmin whole-body scintigraphy in the follow-up of differentiated thyroid carcinoma. J Nucl Med 38:348–352

    PubMed  CAS  Google Scholar 

  • Madeddu G, Spanu A (2004) Use of tomographic nuclear medicine procedures, SPECT and pinhole SPECT, with cationic lipophilic radiotracers for the evaluation of axillary lymph node status in breast cancer patients. Eur J Nucl Med Mol Imaging 31(Suppl 1):S23

    Article  PubMed  Google Scholar 

  • Mathieu I, Mazy S, Willemart B et al (2005) Inconclusive triple diagnosis in breast cancer imaging. Is there a place for scintimammography? J Nucl Med 46: 1574–1581

    PubMed  Google Scholar 

  • Mekhmandarov S, Sandbank J, Cohen M et al (1998) Technetium-99m-MIBI scintimammography in palpable and non-palpable breast lesions. J Nucl Med 39:86–91

    PubMed  CAS  Google Scholar 

  • Myslivecek M, Koranda P, Kaminek M et al (2004) Technetium-99m-MIBI scintimammography by planar and SPECT imaging in the diagnosis of breast carcinoma and axillary lymph node involvement. Nucl Med Rev Cent East Eur 7:151–155

    PubMed  Google Scholar 

  • Nishiyama Y, Yamamoto Y, Ono Y et al (2001) Comparative evaluation of 99mTc-MIBI and 99mTc-HMDP scintimammography for the diagnosis of breast cancer and its axillary metastases. Eur J Nucl Med 28:522–528

    Article  PubMed  CAS  Google Scholar 

  • Obwegeser R, Berghammer P, Rodrigues M et al (1999) A headto-head comparison between technetium-99m-tetrofosmin and technetium-99m-MIBI scintigraphy to evaluate suspicious breast lesions. Eur J Nucl Med 26:1553–1559

    Article  PubMed  CAS  Google Scholar 

  • Ortapamuk H, Ozmen MM, Ibis S et al (1999) Role of technetium tetrofosmin scintimammography in the diagnosis of malignant breast masses and axillary lymph node involvement: a comparative study with mammography and histopathology. Eur J Surg 165:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • O’Tuama LA, Packard AB, Treves ST (1990) SPECT imaging of pediatric brain tumor with hesakis (methoxyisobutylisonitrile) technetium (I). J Nucl Med 31:2040–2041

    PubMed  CAS  Google Scholar 

  • Palmedo H, Schomburg A, Grunwald F et al (1996) Technetium-99m-MIBI scintimammography for suspicious breast lesions. J Nucl Med 37:626–630

    PubMed  CAS  Google Scholar 

  • Pijpers R, Meijer S, Hoekstra OS et al (1997) Impact of lymphoscintigraphy on sentinel node identification with Technetium-99m-colloidal albumin in breast cancer. J Nucl Med 38:366–368

    PubMed  CAS  Google Scholar 

  • Rodrigues M, Chehne F, Kalinowska W et al (2000) Uptake of 99mTc-MIBI and 99mTc-tetrofosmin into malignant versus nonmalignant breast cell lines. J Nucl Med 41:1495–1499

    PubMed  CAS  Google Scholar 

  • Saez RA, McGuire WL, Clark GM (1989) Prognostic factors in breast cancer. Semin Surg Oncol 5:102–110

    Article  PubMed  CAS  Google Scholar 

  • Scarfone C, Jaszczak RJ, Li J et al (1997) Breast tumour imaging using incomplete circular orbit pinhole SPET: a phantom study. Nucl Med Commun 18: 1077–1086

    Article  PubMed  CAS  Google Scholar 

  • Scherfler C, Donnemiller E, Schocke M et al (2002) Evaluation of striatal dopamine transporter function in rats by in vivo β-[123I]CIT pinhole SPECT. NeuroImage 17:128–141

    Article  PubMed  Google Scholar 

  • Schillaci O, Scopinaro F, Danieli R et al (1997) Technetium-99m sestamibi imaging in the detection of axillary lymph node involvement in patients with breast cancer. Anticancer Res 17:1607–1610

    PubMed  CAS  Google Scholar 

  • Schillaci O, Monteleone F, D’Andrea N et al (1999) Technetium-99 tetrofosmin single photon emission computer tomography in the evaluation of suspected lung cancer. Cancer Biother Radiopharm 14:129–134

    Article  PubMed  CAS  Google Scholar 

  • Schillaci O, Scopinaro F, Spanu A et al (2002) Detection of axillary lymph node metastases in breast cancer with Tc-99m tetrofosmin scintigraphy. Int J Oncol 20:483–487

    PubMed  Google Scholar 

  • Schillaci O, Spanu A, Scopinaro F et al (2003) Technetium-99m tetrofosmin scintigraphy in pediatric osteogenic sarcoma. Oncol Rep 10:605–608

    PubMed  Google Scholar 

  • Sehweil AM, McKillop JH, Milroy R et al (1989) Mechanism of 201Tl uptake in tumours. Eur J Nucl Med 15:376–379

    Article  PubMed  CAS  Google Scholar 

  • Sehweil AM, McHillop JH, Milroy R et al (1990) Tl-201 scintigraphy in staging of lung cancer, breast cancer and lymphoma. Nucl Med Commun 11:263–269

    Article  PubMed  CAS  Google Scholar 

  • Skanberg J, Ahlman H, Benjegard SA et al (2002) Indium-111-octreotide scintigraphy, intraoperative gamma-detector localization and somatostatin receptor expression in primary human breast cancer. Breast Cancer Res Treat 74:101–111

    Article  PubMed  CAS  Google Scholar 

  • Smith IC, Ogston KN, Whitford P et al (1998) Staging of the axilla in breast cancer: accurate in vivo assessment using positron emission tomography with 2-(fluorine-18)-fluoro-2-deoxy-D-glucose. Ann Surg 228:220–227

    Article  PubMed  CAS  Google Scholar 

  • Spanu A, Madeddu G (2004) Axillary lymph node status prediction in breast cancer (BC) patients: 99mTc-tetrofosmin axillary pinhole-SPECT (P-SPECT) imaging vs radioguided sentinel lymph node (RSLN) biopsy. Int J Mol Med 14(Suppl 1):76

    Google Scholar 

  • Spanu A, Solinas ME, Chiaramida P et al (1998) Tc-99m tetrofosmin (T) pinhole (P) SPECT in neck metastases from differentiated thyroid carcinoma. Eur J Nucl Med 25(suppl): 934

    Google Scholar 

  • Spanu A, Dettori G, Chiaramida P et al (2000) The role of 99mTc-tetrofosmin Pinhole-SPECT in breast cancer axillary lymph node staging. Cancer Biother Radiopharm 15:81–91

    Article  PubMed  CAS  Google Scholar 

  • Spanu A, Dettori G, Nuvoli S et al (2001) 99mTc-tetrofosmin SPET in the detection of both primary breast cancer and axillary lymph node metastasis. Eur J Nucl Med 28:1781–1794

    Article  PubMed  CAS  Google Scholar 

  • Spanu A, Dettori G, Chessa F et al (2001) 99mTc-Tetrofosmin pinhole-SPECT (P-SPECT) and radioguided sentinel node (SN) biopsy and in breast cancer axillary lymph node staging. Cancer Biother Radiopharm 16:501–513

    Article  PubMed  CAS  Google Scholar 

  • Spanu A, Schillaci O, Meloni GB et al (2002) The usefulness of 99mTc-tetrofosmin SPECT scintimammography in the detection of small size primary breast carcinomas. Int J Oncol 21:831–840

    PubMed  Google Scholar 

  • Spanu A, Ginesu F, Pirina P et al (2003) The usefulness of 99mTc-tetrofosmin SPECT in the detection of intrathoracic malignant lesions. Int J Oncol 22:639–649

    PubMed  Google Scholar 

  • Spanu A, Farris A, Schillaci O et al (2003) The usefulness of 99mTc tetrofosmin scintigraphy in patients with breast cancer recurrences. Nucl Med Commun 24:145–154

    Article  PubMed  CAS  Google Scholar 

  • Spanu A, Tanda F, Dettori G et al (2003) The role of (99m)Tc-tetrofosmin pinhole-SPECT in breast cancer non palpable axillary lymph node metastases detection. Q J Nucl Med 47:116–128

    PubMed  CAS  Google Scholar 

  • Spanu A, Madeddu G, Cottoni F et al (2003) Usefulness of 99mTc-tetrofosmin scintigraphy in different variants of Kaposi’s sarcoma. Oncology 65:295–305

    Article  PubMed  CAS  Google Scholar 

  • Spanu A, Migaleddu V, Manca A et al (2003) The usefulness of single photon emission computerized tomography with pinhole collimator (P-SPECT) in preoperative localization of hyperfunctioning parathyroid glands in patients with secondary hyperparathyroidism. Radiol Med 106:399–412

    PubMed  Google Scholar 

  • Spanu A, Dettori G, Chessa F et al (2003) Radioguided sentinel node (SN) biopsy vs 99mTc-tetrofosmin axillary pinhole-SPECT (P-SPECT) in the prediction of breast cancer (BC) axillary lymph node status. 2nd Congress of the World Society of Breast Health. Budapest. Abstract book: p 47

    Google Scholar 

  • Spanu A, Solinas ME, Migaleddu V et al (2004) The role of 99mTc-tetrofosmin neck pinhole (P)-SPECT in the follow up of patients with differentiated thyroid carcinoma (DTC). Eur J Nucl Med Molecular Imaging 31(Suppl 2):S426

    Google Scholar 

  • Spanu A, Falchi A, Manca A et al (2004) The usefulness of neck Pinhole SPECT as a complementary tool to planar scintigraphy in primary and secondary hyperparathyroidism. J Nucl Med 45:40–48

    PubMed  Google Scholar 

  • Spanu A, Schillaci O, Madeddu G (2005) 99mTc labelled cationic lipophilic complexes in malignant and benign tumors: the role of SPET and pinhole-SPET in breast cancer, differentiated thyroid carcinoma and hyperparathyroidism. Q J Nucl Med Mol Imaging 49:145

    PubMed  CAS  Google Scholar 

  • Tabuenca MJ, Vargas JA, Varela A et al (1998) Technetium-99m-tetrofosmin scintigraphy, P-glycoprotein and lung cancer. J Nucl Med 39:1830–1831

    PubMed  CAS  Google Scholar 

  • Takahashi T, Moriya E, Miyamoto Y et al (1994) The usefulness of 201TlCl scintigraphy for the diagnosis of breast tumor. Nippon Igaku Hoshasen Gakkai Zasshi 54:644–649

    PubMed  CAS  Google Scholar 

  • Tiling R, Tatsch K, Sommer H et al (1998) Technetium-99m-sestamibi scintimammography for the detection of breast carcinoma: comparison between planar and SPECT imaging. J Nucl Med 39:849–856

    PubMed  CAS  Google Scholar 

  • Tornai MP, Bowsher JE, Jaszczak RJ et al (2003) Mammotomography with pinhole incomplete circular orbit SPET. J Nucl Med 44: 583–593

    PubMed  Google Scholar 

  • Utech CI, Young CS, Winter PF (1996) Prospective evaluation of fluorine-18 fluorodeoxyglucose positron emission tomography in breast cancer for staging of the axilla related to surgery and immunocytochemistry. Eur J Nucl Med 23:1588–1593

    Article  PubMed  CAS  Google Scholar 

  • van der Hoeven JJ, Hoekstra OS, Comans EF et al (2002) Determinants of diagnostic performance of [F-18]fluorodeoxyglucose positron emission tomography for axillary staging in breast cancer. Ann Surg 236:619–624

    Article  PubMed  Google Scholar 

  • van Eijck CH, Krenning EP, Bootsma A et al (1994) Somatostatin-receptor scintigraphy in primary breast cancer. Lancet 343:640–643

    Article  PubMed  Google Scholar 

  • Vanhove C, Defrise M, Franken PR et al (2000) Interest of the ordered subsets expectation maximization (OS-EM) algorithm in pinhole single-photon emission tomography reconstruction: a phantom study. Eur J Nucl Med 27: 140–146

    Article  PubMed  CAS  Google Scholar 

  • Veronesi U, Paganelli G, Galimberti V et al (1997) Sentinel node biopsy to avoid axillary dissection in breast cancer with clinically negative lymph nodes. Lancet 349:1864–1887

    Article  PubMed  CAS  Google Scholar 

  • Wahl RL, Siegel BA, Coleman RE et al (2004) Prospective multicenter study of axillary nodal staging by positron emission tomography in breast cancer: a report of the staging breast cancer with PET Study Group. J Clin Oncol 22:277–285

    Article  PubMed  Google Scholar 

  • Walsh R, Kornguth PJ, Soo MS et al (1997) Axillary lymph nodes: mammographic, pathologic and clinical correlations. Am J Roentgenol 168:33–38

    CAS  Google Scholar 

  • Wanet PM, Sand A, Abramovici J (1996) Physical and clinical evaluation of high-resolution thyroid pinhole tomography. J Nucl Med 37:2017–2020

    PubMed  CAS  Google Scholar 

  • Waxman AD, Ramanna L, Memsic LD et al (1993) Thallium scintigraphy in evaluation of mass abnormalities of the breast. J Nucl Med 34:18–23

    PubMed  CAS  Google Scholar 

  • Waxman AD (1997) The role of (99m)Tc methoxyisobutylisonitrile in imaging breast cancer. Semin Nucl Med 27:40–54

    Article  PubMed  CAS  Google Scholar 

  • Weber DA, Ivanovic M, Franceschi D et al (1994) Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 35:342–348

    PubMed  CAS  Google Scholar 

  • Wu MC, Gao DW, Sievers RE et al (2003) Pinhole single-photon emission computed tomography for myocardial perfusion imaging of mice. JACC 42:576–582

    PubMed  Google Scholar 

  • Yang WT, Chang J, Metreweli C (2000) Patients with breast cancer: differences in color Doppler flow and gray-scale US features of benign and malignant axillary lymph nodes. Radiology 215:568–573

    PubMed  CAS  Google Scholar 

  • Yildiz A, Garipagaoglu M, Gungor F et al (2001) The role of technetium-99m methoxyisobutil isonitrile scintigraphy in suspected recurrent breast cancer. Cancer Biother Radiopharm 16:163–169

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura G, Sakurai T, Oura S et al (1999) Evaluation of axillary lymph node status in breast cancer with MRI. Breast Cancer 25:249–258

    Article  Google Scholar 

  • Yukihiro M, Inoue T, Iwasaki T et al (1996) Myocardial infarction in rats: high-resolution single-photon emission tomographic imaging with a pinhole collimator. Eur J Nucl Med 23:896–900

    Article  PubMed  CAS  Google Scholar 

  • Yutani K, Shiba E, Kusuoka H et al (2000) Comparison of FDG-PET with MIBI-SPECT in the detection of breast cancer and axillary lymph node metastasis. J Comput Assist Tomogr 24:274–280

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Madeddu, G., Spanu, A. (2008). Axillary Lymph Node Status Evaluation in Breast Cancer Patients: Role of SPECT and Pinhole SPECT with Cationic Lipophilic Radiotracers. In: Bombardieri, E., Gianni, L., Bonadonna, G. (eds) Breast Cancer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36781-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36781-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36780-2

  • Online ISBN: 978-3-540-36781-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics