Skip to main content

Pearl Millet

  • Chapter
Transgenic Crops IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 59))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. CR Acad Sci III 324:543–550

    CAS  Google Scholar 

  • Devi P, Zhong H, Sticklen MB (2000) In vitro morphogenesis of pearl millet (Pennisetum glaucum (L.) R. Br.): efficient production of multiple shoots and inflorescences from shoot apices. Plant Cell Rep 19:251–260

    Article  Google Scholar 

  • Devos KM, Pittaway TS, Reynolds A, Gale MD (2000) Comparative mapping reveals a complex relationship between the pearl millet genome and those of foxtail millet and rice. Theor Appl Genet 100:190–198

    Article  CAS  Google Scholar 

  • DeVries J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding and seed systems for African crops. CAB International, Wallingford

    Google Scholar 

  • FAO (2004) Pennesitum americanum (L.) Leeke: species description. Food and Agriculture Organization of the United Nations, Rome. Available at: www.fao.org/ag/AGP/AGPC/doc/Gbase/DATA/Pf000297.htm

    Google Scholar 

  • FAOSTAT (2004) FAOSTAT statistical database. Food and Agriculture Organization of the United Nations, Rome. Available at: apps.fao.org/faostat/form?collection=Production.Crops.Primary&Domain=Production&servlet=1&hasbulk=0&version=ext&language=EN

    Google Scholar 

  • Feil B, Stamp P (2002) The pollen-mediated flow of transgenes in maize can already be controlled by cytoplasmic male sterility. AgBiotech Net 4:1–4

    Google Scholar 

  • Girgi M, O’Kennedy MM, Morgenstern A, Mayer G, Lörz H, Oldach KH (2002) Stable transformation and regeneration of pearl millet (Pennisetum glaucum L.) R. Br. via microprojectile bombardment of scutellar tissue. Mol Breed 10:243–252

    Article  CAS  Google Scholar 

  • Girgi M, Breese WA, Lörz H, Oldach KH (2006) Rust and downy mildew resistance in pearl millet (Pennisetum glaucum) mediated by heterologous expression of the afp gene from Aspergillus giganteus. Transgenic Res 15:313–324

    Article  PubMed  CAS  Google Scholar 

  • Goldman JJ, Hanna WW, Fleming G, Ozias-Akins P (2003) Fertile transgenic pearl millet [Pennisetum glaucum [L.] R. Br.] plants recovered through microprojectile bombardment and phosphinothricin selection of apical meristem-, inflorescence-, and immature embryo-derived embryogenic tissues. Plant Cell Rep 21:999–1009

    Article  PubMed  CAS  Google Scholar 

  • Halsberger AG (2003) GM food: the risk assessment of immune hypersensitivity reactions covers more than allergenicity. Food Agric Environ 1:42–45. Available at: www.biotech-info.net/hypersensitivity.html

    Google Scholar 

  • Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S, Warburton M (1999) Plant genetic resources: what can they contribute toward increased crop productivity? Proc Natl Acad Sci USA 96:5937–5943

    Article  PubMed  CAS  Google Scholar 

  • ICRISAT (1996) Improving the unimprovable: succeeding with pearl millet. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh. Available at: africancrops.net/crops%20millet.html

    Google Scholar 

  • ICRISAT (2004) International Crops Research Institute for the Semi-Arid Tropics. Data available at: www.icrisat.org/web/index.asp; www.icrisat.org/gt1/pest.pdf;www.icrisat.org/gt1/drought.pdf; www.icrisat.org/gt1/disease.pdf;www.icrisat.org/gt1/agronomic.pdf

    Google Scholar 

  • Job D (2002) Plant biotechnology in agriculture. Biochimie 84:1105–1110

    Article  PubMed  CAS  Google Scholar 

  • Jones ES, Liu CJ, Gale MD, Hash CT, Witcombe JR (1995) Mapping quantitative trait loci for downy mildew resistance in pearl millet. Theor Appl Genet 91:448–456

    Article  CAS  Google Scholar 

  • Jones ES, Breese WA, Liu CJ, Singh SD, Shaw DS, Witcombe JR (2002) Mapping quantitative trait loci for resistance to downy mildew in pearl millet: field and glasshouse screens detect the same QTL. Crop Sci 42:1316–1323

    Article  CAS  Google Scholar 

  • Lambé P, Dinant M, Matagne RF (1995) Differential long-term expression and methylation of the hygromycin phosphotransferase (hph) and beta glucuronidase (gus) genes in transgenic pearl millet (Pennisetum glauccum) plants. Plant Sci 108:51–62

    Article  Google Scholar 

  • Lambé P, Mutambel HSN, Deltour R, Dinant M (1999) Somatic embryogenesis in pearl millet (Pennisetum americanum): strategies to reduce genotype limitation and to maintain long-term totipotency. Plant Cell Tissue Organ Cult 55:23–29

    Article  Google Scholar 

  • Lambé P, Dinant M, Deltour R (2000) Transgenic pearl millet (Pennisetum glaucum). In: Bajaj YPS (ed) Transgenic crops I. (Biotechnology in agriculture and forestry, vol 46) Springer, Berlin Heidelberg New York, pp 84–108

    Google Scholar 

  • Latha AM, Rao KV, Reddy TP, Reddy VD (2006) Development of transgenic pearl millet (Pennisetum glaucum (L.) R. Br.) plants resistant to downy mildew. Plant Cell Rep (in press). DOI 10.1007/s00299-006-0141-6

    Google Scholar 

  • Liu CJ, Witcombe JR, Pittaway TS, Nash M, Busso CS, Hash CT, Gale MD (1994) An RFLP-based genetic map of pearl millet (Pennisetum glaucum). Theor Appl Genet 89:481–487

    CAS  Google Scholar 

  • Lucca P, Ye X, Potrykus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • NRC(1996) Lost crops of Africa, vol 1: grains. National Research Council/National Academy Press, Washington, D.C.

    Google Scholar 

  • O’Kennedy MM, Smith G, Botha FC (2004a) Improved regeneration efficiency of a pearl millet (Pennisetum glaucum) breeding line. S Afr J Bot 70:502–508

    Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004b) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  CAS  Google Scholar 

  • Oldach KH, Morgenstern A, Rother S, Girgi M, O’Kennedy M, Lörz H (2001) Efficient in vitro plant regeneration from immature zygotic embryos of pearl millet (Pennisetum glaucum (L.) R: Br.) and Sorghum bicolor (L.) Moench. Plant Cell Rep 20:416–421

    Article  CAS  Google Scholar 

  • Poncet V, Lamy F, Devos KM, Gale MD, Sarr A, Robert T (2000) Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor Appl Genet 100:147–159

    Article  CAS  Google Scholar 

  • Poncet V, Martel E, Allouis S, Devos KM, Lamy F, Sarr A, Robert T (2002) Comparative analysis of QTLs affecting domestication traits between two domesticated × wild pearl millet (Pennisetum glaucum L., Poaceae) crosses. Theor Appl Genet 104:965–975

    Article  PubMed  CAS  Google Scholar 

  • Qi X, Pittaway TS, Lindup S, Liu H, Waterman E, Padi FK, Hash CT, Zhu MD, Gale MD, Devos KM (2004) An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum. Theor Appl Genet 109:1485–1493

    Article  PubMed  CAS  Google Scholar 

  • Sharma HC, Crouch JH, Sharma KK, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraints. Plant Sci 163:381–395

    Article  CAS  Google Scholar 

  • Swedlund B, Vasil IK (1985) Cytogenetic characterization of embryogenic callus and regenerated plants of Pennisetum americanum (L.) K. Schum. Theor Appl Genet 69:575–581

    Article  Google Scholar 

  • Taylor GM, Vasil IK (1991) Histology of, and physical factors affecting, transient GUS expression in pearl millet (Pennisetum glaucum [L.] R. Br.) embryos following microprojectile bombardment. Plant Cell Rep 10:120–125

    Article  CAS  Google Scholar 

  • Thakur RP, Rai KN, Rao VP, Rao AS (2001) Genetic resistance of pearl millet male-sterile lines to diverse Indian pathotypes of Sclerospora graminicola. Plant Dis 85:621–626

    Article  Google Scholar 

  • Vasil V, Vasil IK (1980) Isolation and culture of cereal protoplasts. Part 2: embryogenesis and plantlet formation from protoplasts of Pennisetum americanum. Theor Appl Genet 56:97–99

    Article  Google Scholar 

  • Vasil V, Vasil IK (1981a) Somatic embryogenesis and plant regeneration from tissue cultures of Pennisetum americanum and P. americanum × P. purpureum hybrid. Am J Bot 68:864–872

    Article  Google Scholar 

  • Vasil V, Vasil IK (1981b) Somatic embryogenesis and plant regeneration from suspension cultures of pearl millet (Pennisetum americanum). Ann Bot 47:669–678

    Google Scholar 

  • Wilson JP (2000) Pearl millet diseases: a compilation of information on the known pathogens of pearl millet (Pennisetum glaucum [L.] R. Br.). (Agriculture Handbook 716) United States Department of Agriculture Agricultural Research Service, Washington, D.C.

    Google Scholar 

  • Wisniewski JP, Frangne N, Massonneau A, Dumas C (2002) Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy. Biochimie 84:1095–1103

    Article  PubMed  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Cavan GP, Howarth CJ (2002) Quantitative trait loci associated with traits determining grain and stover yield in pearl millet under terminal drought stress conditions. Theor Appl Genet 104:67–83

    Article  PubMed  CAS  Google Scholar 

  • Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterization of QTL × E interactions for traits determining grain and stover yield in pearl millet. Theor Appl Genet 106:512–520

    PubMed  CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ, Skot K (2004) Genomic regions associated with grain yield and aspects of post-flowering drought tolerance in pearl millet across stress environments and testers background. Euphytica 136:265–277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Girgi, M., O’Kennedy, M.M. (2007). Pearl Millet. In: Pua, EC., Davey, M.R. (eds) Transgenic Crops IV. Biotechnology in Agriculture and Forestry, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36752-9_6

Download citation

Publish with us

Policies and ethics