Advertisement

Compact Preference Representation for Boolean Games

  • Elise Bonzon
  • Marie-Christine Lagasquie-Schiex
  • Jérôme Lang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4099)

Abstract

Boolean games, introduced by [15,14], allow for expressing compactly two-players zero-sum static games with binary preferences: an agent’s strategy consists of a truth assignment of the propositional variables she controls, and a player’s preferences is expressed by a plain propositional formula. These restrictions (two-players, zero-sum, binary preferences) strongly limit the expressivity of the framework. While the first two can be easily encompassed by defining the agents’ preferences as an arbitrary n-uple of propositional formulas, relaxing the last one needs Boolean games to be coupled with a propositional language for compact preference representation. In this paper, we consider generalized Boolean games where players’ preferences are expressed within two of these languages: prioritized goals and propositionalized CP-nets.

Keywords

Nash Equilibrium Preference Relation Propositional Variable Truth Assignment Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K.R., Rossi, F., Venable, K.B.: CP-nets and Nash equilibria. In: Elsevier (ed.) Proc. CIRAS 2005 (Third International Conference on Computational Intelligence, Robotics and Autonomous Systems), Singapore, December 13-16 (2005)Google Scholar
  2. 2.
    Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proc. of the 13th IJCAI, pp. 640–645 (1993)Google Scholar
  3. 3.
    Bonzon, E., Lagasquie-Schiex, M., Lang, J., Zanuttini, B.: Boolean games revisited (2006), available at ftp:ftp.irit.fr/pub/IRIT/RPDMP/ecai06.ps.gzGoogle Scholar
  4. 4.
    Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: Cp-nets: A tool for representing and reasoning with conditional Ceteris Paribus preference statements. Journal of Artificial Intelligence Research 21, 135–191 (2004)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: Preference-based constrained optimization with cp-nets. Computational Intelligence 20(2), 137–157 (2004) Special Issue on PreferencesCrossRefMathSciNetGoogle Scholar
  6. 6.
    Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proc. of UAI (1999)Google Scholar
  7. 7.
    Brewka, G.: Preferred subtheorie: An extended logical framework for default reasoning. In: Proc. of the 11th IJCAI, pp. 1043–1048 (1989)Google Scholar
  8. 8.
    Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness of propositional languages for preference representation. In: Proc. of the 9th KR, pp. 203–212 (2004)Google Scholar
  9. 9.
    De Vos, M., Vermeir, D.: Choice logic programs and Nash equilibria in strategic games. In: Flum, J., Rodríguez-Artalejo, M. (eds.) CSL 1999. LNCS, vol. 1683, pp. 266–276. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Dubois, D., Lang, J., Prade, H.: Inconsistency in possibilistic knowledge bases: To live with it or not live with it. In: Fuzzy Logic for the Management of Uncertainty, pp. 335–351. Wiley, Chichester (1992)Google Scholar
  11. 11.
    Dunne, P.E., van der Hoek, W.: Representation and complexity in boolean games. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 347–359. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Foo, N., Meyer, T., Brewka, G.: LPOD answer sets and Nash equilibria. In: Maher, M.J. (ed.) ASIAN 2004. LNCS, vol. 3321, pp. 343–351. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Geffner, H.: Default reasoning: causal and conditional theories. MIT Press, Cambridge (1992)Google Scholar
  14. 14.
    Harrenstein, P.: Logic in Conflict. PhD thesis, Utrecht University (2004)Google Scholar
  15. 15.
    Harrenstein, P., van der Hoek, W., Meyer, J.J., Witteveen, C.: Boolean games. In: Proc. of TARK, pp. 287–298 (2001)Google Scholar
  16. 16.
    Lang, J.: Logical preference representation and combinatorial vote. Annals of Mathematics and Artificial Intelligence 42, 37–71 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Lehmann, D.: Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence 15, 61–82 (1995)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Elise Bonzon
    • 1
  • Marie-Christine Lagasquie-Schiex
    • 1
  • Jérôme Lang
    • 1
  1. 1.IRIT, UPSToulouseFrance

Personalised recommendations