Advertisement

The Representation of Multiplication Operation on Fuzzy Numbers and Application to Solving Fuzzy Multiple Criteria Decision Making Problems

  • Chien-Chang Chou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4099)

Abstract

This paper proposes the canonical representation of multiplication operation on trapezoidal fuzzy numbers using the L− − 1-R− − 1 Inverse Function Arithmetic Representation method. Finally, the canonical representation proposed in this paper is applied to solve a fuzzy multiple criteria decision making problem of selection of plant location.

Keywords

Fuzzy Number Candidate Location Canonical Representation Trapezoidal Fuzzy Number Fuzzy Rating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamo, J.M.: Fuzzy Decision Trees. Fuzzy Sets and Systems 4, 207–219 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Campos, L., Verdegay, J.L.: Linear Programming Problems and Ranking of Fuzzy Numbers. Fuzzy Sets and Systems 32, 1–11 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, S.H., Hsieh, C.H.: Graded Mean Integration Representation of Generalized Fuzzy Number. In: Proceeding of 1998 sixth Conference on Fuzzy Theory and its Application (CD-ROM), filename: 031.wdl, Chinese Fuzzy Systems Association, Taiwan, Republic of China, pp. 1–6 (1998)Google Scholar
  4. 4.
    Chou, C.C.: The Canonical Representation of Multiplication Operation on Triangular Fuzzy Numbers. Computers and Mathematics with Applications 45, 1601–1610 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Delgado, M., Vila, M.A., Voxman, W.: On a Canonical Representation of Fuzzy Numbers. Fuzzy Sets and Systems 93, 125–135 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Operations on Fuzzy Numbers. Journal of Systems Sciences 9, 613–626 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Heilpern, S.: Representation and Application of Fuzzy Numbers. Fuzzy Sets and Systems 91, 259–268 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Kaufmann A., Gupta, M.M.: Introduction to Fuzzy Arithmetic Theory and Applications. Van Nostrand Reinhold (1991) Google Scholar
  9. 9.
    Li, R.J.: Fuzzy Method in Group Decision Making. Computers and Mathematics with Applications 38, 91–101 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Liou, T.S., Wang, M.J.: Ranking Fuzzy Numbers with Integral Values. Fuzzy Sets and Systems 50, 247–255 (1992)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Luo, X., Jennings, N.R., Shadbolt, N., Leung, H., Lee, J.H.: A Fuzzy Constraint Based Model for Bilateral Multi-issue Negotiations in Semi-competitive Environments. Artificial Intelligence 148, 53–102 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Ma, M., Friedman, M., Kandel, A.: A New Fuzzy Arithmetic. Fuzzy Sets and Systems 108, 83–90 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mizumoto, M., Tanaka, K.: The Four Operations of Arithmetic on Fuzzy Numbers. Systems Comput. Controls 7(5), 73–81 (1976)MathSciNetGoogle Scholar
  14. 14.
    Nahmias, S.: Fuzzy Variables. Fuzzy Sets and Systems, 97–111 (1978)Google Scholar
  15. 15.
    Yager, R.R.: A Procedure for Ordering Fuzzy Subsets of the Unit Interval. Information Sciences 24, 143–161 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy Sets. Information and Control 8, 338–353 (1965)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chien-Chang Chou
    • 1
    • 2
  1. 1.Department of Transportation and Navigation ScienceNational Taiwan Ocean UniversityKeelungTaiwan, Republic of China
  2. 2.Department of Shipping TechnologyNational Kaohsiung Marine UniversityKaohsiungTaiwan, Republic of China

Personalised recommendations