Advertisement

Cellular Monte Carlo Modeling of AlxIn1−xSb/InSb Quantum Well Transistors

  • J. Branlard
  • N. Faralli
  • T. Dutta-Roy
  • S. M. Goodnick
  • D. K. Ferry
  • S. J. Aboud
  • M. Saraniti
Part of the Springer Proceedings in Physics book series (SPPHY, volume 110)

Abstract

In this work, an Indium Antimonide (InSb) quantum well transistor is investigated using full-band Monte Carlo simulations. The steady-state characteristic of the device is first analyzed, showing particle transport along the two-dimensional electron gas (2DEG). The small-signal behavior of the device is also investigated. Finally, the noise analysis is performed, allowing for a two-dimensional mapping of the noise within the device.

Keywords

Power Spectral Density Noise Analysis Negative Differential Resistance Drain Voltage Electron Drift Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Ashely, A.B. Dean, C.T. Elliott, R. Jefferies, F. Khaleque and T.J. Philipps, “High-Speed, Low-Power InSb Transistors”, Elec. Dev. Meeting, 1997 Technical Digest International, p. 751–754, 7–10 Dec. 1997Google Scholar
  2. [2]
    E. Sijerčič, K. Mueller and B. Pejčinovič, “Simulation of the exclusion/extraction InSb MOSFETs”, IEEE W. on Microelec. and Elec. Dev., 2004Google Scholar
  3. [3]
    T. Ashley, A.B. Dean, C.T. Elliott, G.J. Pryce, A.D. Johnson and H. Willis, “Uncooled high-speed InSb field-effect transistors”, Appl. Phys. Lett., 66,(4), Jan. 1995.Google Scholar
  4. [4]
    T. Ashley et al. “Novel InSb-based Quantum Well Transistors for Ultra-High Speed, Low Power Logic Applications, IEEE, 2004Google Scholar
  5. [5]
    M. Saraniti and S.M. Goodnick, “Hybrid Fullband Cellular Automaton/Monte Carlo Approach for Fast Simulation of Charge Transport in Semiconductors”, IEEE Trans. on Elec. Dev., 47,(10), Oct. 2000Google Scholar
  6. [6]
    W. Fawcett, J.G. Ruch, “NDM in InSb”, Appl. Phys. Lett., 15,(11), 1969Google Scholar
  7. [7]
    O. Ozbas, M. Akarsu, “MC Simulation of Electron Transport in InSb”, Turk. Jour. Phys., 26, p. 283–287, Nov. 2001.ADSGoogle Scholar
  8. [8]
    D.K. Ferry, “The onset of quantization in ultra-submicron semiconductor devices” Superlattices and Microstructures, 28,(5/6), p. 419–423, 2000CrossRefADSGoogle Scholar
  9. [9]
    S.L. Laux, “Techniques for Small-Signal Analysis of Semiconductor Devices”, IEEE Trans. on Elec. Dev., ED-32,(10), Oct. 1985.Google Scholar
  10. [10]
    J. Branlard, S. Aboud, P. Osuch, S. Goodnick and M. Saraniti, “Frequency Analysis of Semiconductor Devices Using Full-Band Cellular Monte Carlo Simulations.”, Monte Carlo Methods and Appl., 10,(3–4), 2004Google Scholar
  11. [11]
    L. Varani and L. Reggiani, “Microscopic Theory of Electronic Noise in Semiconductor Unipolar Structures”, La Rivista del Nuovo Cimento, 1994Google Scholar

Copyright information

© Springer-Berlag Berlin Heidelberg 2006

Authors and Affiliations

  • J. Branlard
    • 1
  • N. Faralli
    • 1
  • T. Dutta-Roy
    • 1
  • S. M. Goodnick
    • 2
  • D. K. Ferry
    • 2
  • S. J. Aboud
    • 3
  • M. Saraniti
    • 1
  1. 1.ECE Dept.Illinois Institute of TechnologyChicagoUSA
  2. 2.EE Dept.Arizona State UniversityTempeUSA
  3. 3.ECE Dept.Worcester Polytechnic InstituteWorcesterUSA

Personalised recommendations