Skip to main content

A Simple Model for Describing Yield Surface Evolution During Plastic Flow

  • Chapter
Deformation and Failure in Metallic Materials

Abstract

It has been recognized for a long time that inelastic deformations may induce anisotropy in the material response, even if this is initially isotropic. For metallic materials, deformation induced anisotropy is reflected above all by translation, rotation and distortion of the yield surface. This has been confirmed by several experimental investigations independent of the way the yield point is defined. In the present paper a simple, thermodynamically consistent model is proposed., describing the evolving anisotropy of the yield surface. The model is first theoretically established, based on a sufficient condition for the dissipation inequality to be satisfied. Then, it is applied to predict the subsequent yield surfaces, after various prestressings, which have been observed experimentally by Ishikawa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, P. J., Frederick, C. O. (1966) A mathematical representation of the multiaxial Bauschinger effect. Gen. Electric Gen. Board, report RD/B/N 731

    Google Scholar 

  2. Backhaus, G. (1968) Zur FlieBgrenze bei allgemeiner Verfestigung. ZAMM 48, 99–108

    Article  Google Scholar 

  3. Baltov, A., Sawczuk, A. (1964) A rule of anisotropic hardening. Act. Mech. 1, 81–92

    Article  Google Scholar 

  4. Casey, J., Naghdi, P. M. (1981) On the characterization of strain-hardening in plasticity. Journal of Applied Mechanics 48, 285–295

    Article  MATH  Google Scholar 

  5. Chaboche, J. L., Dang-Van, K., Cordier, G. (1979) Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel. SMIRT-5, Division L, Berlin

    Google Scholar 

  6. Dafalias, Y. F. (1979) Anisotropic hardening of initially orthotropic materials. ZAMM 59, 437–446

    Article  MATH  Google Scholar 

  7. Dafalias, Y. F., Popov, E. P. (1975) A model of nonlinearly hardening materials for complex loading. Acta Mechanica 21, 173–192

    Article  MATH  Google Scholar 

  8. Dafalias, Y. F., Popov, E. P. (1976) Plastic internal variables formalism of cyclic plasticity. Journal of Applied Mechanics 98, 645–651

    Article  Google Scholar 

  9. Dafalias, Y. F. (1987) Issues on the constitutive formulation at large elastoplastic deformations, Part I: Kinematics. Archives of Mechanics 69, 119–138

    MATH  Google Scholar 

  10. Dafalias, Y. F. (1993) On multiple spins and texture development. Case study: Kinematic and orthotropic hardening. Archives of Mechanics 100, 171–194

    MATH  MathSciNet  Google Scholar 

  11. Dafalias, Y. F. (1998) Plastic spin: Necessity and redundancy. International Journal of Plasticity 14, 909–931

    Article  MATH  Google Scholar 

  12. Häusler, O., Schick, D., Tsakmakis, Ch. (2002) Description of plastic anisotropy effects at large deformations. Part II: The case of transverse isotropy. In press in International Journal of Plasticity

    Google Scholar 

  13. Hecker, S. S. (1971) Yield surfaces in prestrained aluminum and copper. Metallurgical Transactions 2, 2077–2086

    Article  Google Scholar 

  14. Hecker, S. S. (1973) Influence of deformation history on yield locus and stressstrain behaviour of aluminum and copper. Metallurgical Transactions 4, 985–989

    Article  Google Scholar 

  15. Helling, D. E., Miller, A. K., Stout, M. G. (1986) An experimental investigation of the yield loci of 1100–0 aluminum, 70:30 brass, and an overaged 2024 aluminum alloy after various prestrains. J. Eng. Mat. Tech., ASME 108, 313–320

    Article  Google Scholar 

  16. Henshall, G. A., Helling, D. E., Miller, A. K. (1996) Improvements in the MAT-MOD equations for modeling solute effects and yield-surface distortion. In “Unified Constitutive laws of plastic deformation”, (Eds. Krausz, A. S., Krausz, K.) Academic Press, New York, 153–227

    Chapter  Google Scholar 

  17. Ikegami, K. (1982) Experimental plasticity on the anisotropy of metals. In “Proceedings of the Euromech Colloquium 115” (Ed. Boehler, J. P.) Editions du Centre National de la Recherche Scientifique, Paris, 201–227

    Google Scholar 

  18. Ishikawa, H. (1997) Subsequent yield surface probed from its current center. International Journal of Plasticity 13, 533–549

    Article  Google Scholar 

  19. Ishikawa, H., Sasaki, K. (1988) Yield surface of SUS304 under cyclic loading. Journal of Engineering Materials and Technology, ASME 110, 364–371

    Article  Google Scholar 

  20. Ishikawa, H., Sasaki, K. (1998) Deformation induced anisotropy and memorized back stress in constitutive model. International Journal of Plasticity 14, 627–646

    Article  MATH  Google Scholar 

  21. Khan, A. S., Huang, S. (1995) Continuum theory of plasticity. Wiley, New York

    MATH  Google Scholar 

  22. Khan, A. S., Wang, X. (1993) An experimental study on subsequent yield surface after finite shear prestraining. Int. J. of Plasticity 9, 889–905

    Article  Google Scholar 

  23. Kowalewski, Z. L., Sliwowski, M. (1997) Effect of cyclic loading on yield surface evolution of 18G2A low-alloy steel. Int. J. of Mech. Sci. 39, 51–68

    Article  Google Scholar 

  24. Krempl, E. (1987) Models of viscoplasticity — some comments on equilibrium (back)stress and drag stress. Acta Mechanica 69, 25–42

    Article  Google Scholar 

  25. Marquis, D. (1979) Modélisation et identification de l’écrouissage anisotrope des métaux. General Electric Generating Board, report RD/B/N 731

    Google Scholar 

  26. Miastkowski, J. (1968) Analysis of the memory effect of plastically prestrained material. Archiwum Mechaniki Stosowanej 20, 257–276

    Google Scholar 

  27. Miastkowski, J., Szczepiński, W. (1965) An experimental study of yield surfaces of prestrained brass. International Journal of Solids and Structures 1, 189–194

    Article  Google Scholar 

  28. Mroz, Z. (1967) On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids 15, 163ff

    Article  Google Scholar 

  29. Naghdi, P. M. (1960) Stress-strain relations in plasticity and thermoplasticity. In “Proc. Second Symp. Naval Structural Mechanics” (Eds. Lee, E. H. and Symonds, P. S.), Pergamon, Oxford, 121–169

    Google Scholar 

  30. Perzyna, P. (1963) The constitutive equations for rate sensitive plastic materials. Quarterly of Applied Mathematics 20, 321–332

    MATH  MathSciNet  Google Scholar 

  31. Phillips, A. (1979) The foundations of plasticity. Experiments. Theory and selected applications. CISM, Udine, 189–271

    Google Scholar 

  32. Phillips, A., Das, P. K. (1985) Yield surfaces and loading surfaces of aluminum and brass: an experimental investigation at room and elevated temperatures. International Journal of Plasticity 1, 89–109

    Article  Google Scholar 

  33. Phillips, A., Moon, H. (1977) An experimental investigation concerning yield surfaces and loading surfaces. Acta Mechanica 27, 91–102

    Article  Google Scholar 

  34. Phillips, A., Tang, J. L. (1972) The effect of loading path on the yield surface at elevated temperatures. International Journal of Solids and Structures 8, 463–474

    Article  Google Scholar 

  35. Rees, D. W. A. (1982) Yield functions that account for the effects of initial and subsequent plastic anisotropy. Acta Mechanica 43, 223–241

    Article  MATH  Google Scholar 

  36. Stout, M. G., Martin, P. L., Helling, D. E., Canova, G. R. (1985) Multiaxial yield behaviour of 1100 aluminum following various magnitudes of prestrain. International Journal of Plasticity 1, 163–174

    Article  Google Scholar 

  37. Trampczynski, W. (1992) The experimental verification of the unloading technique for the yield surface determination. Archives of Mechanics 44, 171–190

    Google Scholar 

  38. Tsakmakis, Ch. (1987) Über inkrementelle Materialgleichungen zur Beschreibung groBer inelastischer Deformationen. Fortschrittsberichte VDI Reihe 18 Nr. 36, Düsseldorf: VDI-Verlag

    Google Scholar 

  39. Tsakmakis, Ch. (1995) Kinematic hardening rules in finite plasticity Part I: A constitutive approach. Continuum Mech. Thermodyn. 8, 215–231

    Article  Google Scholar 

  40. Tsakmakis, Ch. (1996) Formulation of viscoplasticity laws using overstress. Acta Mechanica 115, 179–202

    Article  MATH  Google Scholar 

  41. Tsakmakis, Ch. (2002) Description of plastic anisotropy effects at large deformations. Part I: Restrictions imposed by the second law and the postulate of Il’iushin. In press in International Journal of Plasticity

    Google Scholar 

  42. Wegener, K., Schlegel, M. (1996) Suitability of yield functions for the approximation of subsequent yield surfaces. Int. J. of Plasticity 12, 1151–1177

    Article  MATH  Google Scholar 

  43. Williams, J. F., Svensson, N. L. (1970) Locus of 1100-F aluminum. Journal of Strain Analysis 5, 128–139

    Article  Google Scholar 

  44. Williams, J. F., Svensson, N. L. (1971) Effect of torsional prestrain on the yield locus of 1100-f aluminum. Journal of Strain Analysis 6, 263–272

    Article  Google Scholar 

  45. Wu, H. C., Hong, H. K., Lu, J. K. (1995) An endochronic theory accounted for deformation induced anisotropy. International Journal of Plasticity 11, 145–162

    Article  MATH  Google Scholar 

  46. Yoshimura, Y. (1959) Hypothetical theory of anisotropy and the Bauschinger effect due to plastic strain history. Aeronautical Research Institute, University of Tokyo, report No. 349, 221–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dafalias, Y.F., Schick, D., Tsakmakis, C. (2003). A Simple Model for Describing Yield Surface Evolution During Plastic Flow. In: Hutter, K., Baaser, H. (eds) Deformation and Failure in Metallic Materials. Lecture Notes in Applied and Computational Mechanics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36564-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36564-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05649-9

  • Online ISBN: 978-3-540-36564-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics