Skip to main content

Justification of Homogenized Models for Viscoplastic Bodies with Microstructure

  • Chapter
Deformation and Failure in Metallic Materials

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 10))

Abstract

We justify the formal homogenization of the quasistatic initial boundary value problem with internal variables, called the microscopic problem, which models the deformation behavior of viscoplastic bodies. To this end it is first shown that the formally derived homogenized initial-boundary value problem has a solution. From this solution an asymptotic solution of the microscopic problem is constructed, and it is shown that the difference of the exact solution and the asymptotic solution tends to zero if the length scale of the microstructure converges to zero. Our results are proved for viscoplastic material behavior that can be modeled by constitutive equations of monotone type with linear hardening terms. For technical reasons we are only able to prove the convergence result locally in time and for smooth data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, H.-D. (1998) Materials with memory. Initial-boundary value problems for constitutive equations with internal variables. Lecture Notes in Mathematics 1682. Springer, Berlin

    MATH  Google Scholar 

  2. Alber, H.-D. (2000) Evolving microstructure and homogenization. Continuum Mech. Thermodyn. 12, 235–286

    MATH  MathSciNet  Google Scholar 

  3. Alber, H.-D. (2001) Existence of solutions to a class of quasistatic problems in viscoplasticity theory. Menaldi, J.; Rofman, E.; Sulem, A. (eds.), Optimal control and partial differential equations 95–104. IOS Press, Amsterdam

    Google Scholar 

  4. Alber, H.-D., Chelmiński, K. (2002) Quasistatic problems in viscoplasticity theory. Preprint Fachbereich Mathematik, TU Darmstadt 2190, (43 pages). Submitted to Math. Z.

    Google Scholar 

  5. Allaire, G. (1991) Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. I: Abstract framework, a volume distribution of holes. Arch. Ration. Mech. Anal. 113, No.3, 209–259

    Article  MATH  MathSciNet  Google Scholar 

  6. Allaire, G. (1992) Homogenization and two-scale convergence SIAM J. Math. Anal. 23, No.6, 1482–1518

    Article  MATH  MathSciNet  Google Scholar 

  7. Allaire, G. (2002) Shape optimization by the homogenization method. Applied Mathematical Sciences 146. Springer, New York

    Book  MATH  Google Scholar 

  8. Allaire, G., Bal, G. (1999) Homogenization of the criticality spectral equation in neutron transport. M2AN, Math. Model. Numer. Anal. 33, No.4, 721–746

    Article  MATH  MathSciNet  Google Scholar 

  9. Allaire, G., Briane, M. (1996) Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126, No.2, 297–342

    Article  MATH  MathSciNet  Google Scholar 

  10. Allaire, G., Conca, C., Vanninathan, M. (1999) Spectral asymptotics of the Helmholtz model in fluid-solid structures. Int. J. Numer. Methods Eng. 46, No.9, 1463–1504

    Article  MATH  MathSciNet  Google Scholar 

  11. Allaire, G., Kohn, R. V. (1993) Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Q. Appl. Math. 51, No.4, 643–674

    MATH  MathSciNet  Google Scholar 

  12. Barbu, V. (1976) Nonlinear semigroups and differential inclusions in Banach spaces. Editura Academiei, Bucharest; Noordhoff, Leyden

    Book  Google Scholar 

  13. Braides, A., Defranceschi, A. (1998) Homogenization of multiple integrals. Oxford Lecture Series in Mathematics and its Applications 12. Clarendon Press, Oxford

    Google Scholar 

  14. Brézis, H. (1973) Operateurs maximaux monotones. North Holland, Amsterdam

    MATH  Google Scholar 

  15. Chelmiński, K. (1999) On monotone plastic constitutive equations with polynomial growth condition. Math. Meth. in App. Sci. 22, 547–562

    Google Scholar 

  16. Chelmiński, K. (2001) Coercive approximation of viscoplasticity and plasticity. Asymptotic Analysis 26, 105–133

    MATH  MathSciNet  Google Scholar 

  17. Chelmiński, K., Naniewicz, Z. (2002) Coercive limits for constitutive equations of monotone-gradient type. Nonlinear Analysis TMA 48, No.8, 1197–1214

    Article  MATH  Google Scholar 

  18. Chelmiński, K., (2001) Coercive and self-controlling quasistatic models of the gradient type with composite inelastic constitutive equations. Preprint Fachbereich Mathematik, TU Darmstadt 2164. Submitted to J. nonlinear Sci.

    Google Scholar 

  19. Chelmiński, K., (2002) Monotone constitutive equations in the theory of the inelastic behaviour of metals - A summary of results. This volume

    Google Scholar 

  20. Dacorogna, B. (1989) Direct methods in the calculus of variations. Applied Mathematical Sciences 78. Springer, Berlin

    Book  Google Scholar 

  21. Ebenfeld, S. (2001) Remarks on the quasistatic problem of viscoelasticity. Existence, uniqueness and homogenization. Preprint Fachbereich Mathematik, TU Darmstadt 2174. To appear in Continuum Mech. Thermodyn.

    Google Scholar 

  22. Giaquinta, M., Modica, G., Soucek, J. (1998) Cartesian currents in the calculus of variations II. Variational integrals. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge 38. Springer, Berlin

    Google Scholar 

  23. Halphen, B., Nguyen Quoc Son (1975) Sur les matériaux standards généralisés. J. Méc. 14, 39–63

    MATH  Google Scholar 

  24. Hornung, U. (ed.) (1997) Homogenization and porous media. Interdisciplinary Applied Mathematics 6. Springer, New York

    Google Scholar 

  25. Hornung, U., Jäger, W. (1991) Diffusion, convection, adsorption, and reaction of chemicals in porous media. J. Differ. Equations 92, No.2, 199–225

    Article  MATH  Google Scholar 

  26. Hornung, U., Jäger, W., Mikelic, A. (1994) Reactive transport through an array of cells with semi-permeable membranes RAIRO, Modélisation. Math. Anal. Numér. 28, No.1, 59–94

    MATH  Google Scholar 

  27. Jäger, W., Mikelic, A. (1998) On the effective equations of a viscous incompressible fluid flow through a filter of finite thickness. Commun. Pure Appl. Math. 51, No.9–10, 1073–1121

    Article  MATH  Google Scholar 

  28. Jäger, W., Mikelic, A., Neuss, N. (2001) Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM. J. Sci. Comput. 22, No.6, 2006–2028

    Article  MATH  Google Scholar 

  29. Jäger, W., Oleinik, O. A., Shaposhnikova, T. A(1997) On homogenization of solutions of the Poisson equation in a perforated domain with different types of boundary conditions on different cavities. Appl. Anal. 65, No.3–4, 205–223

    Article  MATH  MathSciNet  Google Scholar 

  30. Jikov, V., Kozlov, S., Oleinik, 0. (1995) Homogenization of differential operators and integral functions. Springer, Berlin

    Google Scholar 

  31. Kröner, E. (1977) Bounds for effective elastic moduli of disordered materials. J. Mech. Phys. Solids 25, 137–155

    Article  MATH  Google Scholar 

  32. Miehe, Ch., Schröder, J. (1999) Computational micro-macro-transitions in thermoplastic analysis of finite strains. Bruhns, O. T., Stein, E. (eds.), Proceedings of the IUTAM Symposium on Micro- and Macrostructural Aspects of Thermoplasticity held in Bochum, Germany, 25.-29. August 1997, 137–146

    Google Scholar 

  33. Miehe, Ch., Schröder, J., Schotte, J. (1999) Computational homogenization analysis in finite plasticity. Simulation of texture development in polycrystalline materials. Comput. Methods Appl. Mech. Eng. 171, No.3–4, 387–418

    Article  MATH  Google Scholar 

  34. Oleinik, O. A., Shamaev, A. S., Yosifian, G. A. (1992) Mathematical problems in elasticity and homogenization. Studies in Mathematics and its Applications 26. North-Holland, Amsterdam

    Google Scholar 

  35. Ortiz, M. (1996) Computational micromechanics. Comput. Mech. 18, No.5, 321–338

    Article  MATH  Google Scholar 

  36. Pankov, A. (1997) G-convergence and homogenization of nonlinear partial differential operators. Kluwer, Dordrecht

    MATH  Google Scholar 

  37. Ponte Castaneda, P. (1997) Nonlinear composite materials: Effective constitutive behavior and microstructure evolution. Suquet, P. (ed.), Continuum micromechanics. CISM Courses Lect. 377, 131–195. Springer, Wien

    Google Scholar 

  38. Ponte Castaneda, P., Zaidman, M. (1994) Constitutive models for porous materials with evolving microstructure. J. Mech. Phys. Solids 42, No.9, 1459–1497

    Article  MATH  MathSciNet  Google Scholar 

  39. Suquet, P. (1997) Effective properties of nonlinear composites. Suquet, P. (ed.), Continuum micromechanics. CISM Courses Lect. 377, 197–264. Springer, Wien

    Google Scholar 

  40. Talbot, D. R. S., Willis, J. R. (1997) Bounds of third order for the overall response of nonlinear composites. J. Mech. Phys. Solids 45, No.1, 87–111

    Article  MATH  MathSciNet  Google Scholar 

  41. Zaoui, A. (1997) Structural morphology and constitutive behaviour of microheterogeneous materials. Suquet, P. (ed.), Continuum micromechanics. CISM Courses Lect. 377, 291–347. Springer, Wien

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alber, HD. (2003). Justification of Homogenized Models for Viscoplastic Bodies with Microstructure. In: Hutter, K., Baaser, H. (eds) Deformation and Failure in Metallic Materials. Lecture Notes in Applied and Computational Mechanics, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36564-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36564-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05649-9

  • Online ISBN: 978-3-540-36564-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics