Applications of Tensor Functions in Damage Mechanics of Anisotropic Materials

Conference paper
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 9)

Abstract

This article will provide a short survey of some recent advances in the mathematical modelling of materials behaviour under creep conditions. The tertiary creep phase is accompanied by the formation of microscopic cracks on the grain boundaries, so that damage accumulation occurs.

The damage state in a uni-axial tension specimen is discussed and the time to rupture has been calculated.

Then, the paper is concerned with the creep behaviour of materials in a state of multiaxial stress. Because of its microscopic nature, damage generally has an anisotropic character even if the material was originally isotropic. The fissure orientation and length cause anisotropic macroscopic behaviour. Therefore, damage in an isotropic or anisotropic material which is in a state of multi-axial stress can only be described in a tensorial form. Thus, tensorial constitutive and damage evolutional equations have been developed. Some examples for practical use and simplified representations are proposed. Furthermore, important damage effective stress concepts are discussed in detail.

Finally, some own experiments should be mentioned, which have been carried out in order to examine the validity of the mathematical modelling.

Keywords

Anisotropy constitutive equations creep rupture damage effective stress tensor functions time to rupture experimental results

References

1. Adams, B., Boehler, J., Guidi, M. and Onat, E. (1992). Group theory and representation of microstructure, and mechanical behavior of polycrystals, J. Mech. Phys. Solids 40: 723–747.
2. Al-Gadhib, A., Baluch, M., Shaalan, A. and Khan, A. (2000). Damage model for monotonic and fatigue response of high strength concrete Int J. Damaage Mecht. 9: 57–78Google Scholar
3. Altenbach, H., Altenbach, J. and Schieße, P. (1990). Konzept der Schädigungs-mechanik und ihre Anwendung bei der werkstoffmechanischen Bauteilanalyse, Techn. Mech. 11: 81–93.Google Scholar
4. Altenbach, H., Morachkovsky, O., Naumenko, K. and A., S. (1997). Geometrically nonlinear bending of thin-walled shells and plates under creep damage conditions, Arch. Appl. Mech. 67: 339–352.
5. Altenbach, J., Altenbach, H. and Naumenko, K. (1997). Lebensdauerabschätzung dünnwandiger Flächentragwerke auf der Grundlage phenomenologischer Materialmodelle für Kriechen und Schädigung, Techn. Mech. 12: 353–364.Google Scholar
6. Avula, X. (1987). Mathematical modelling, Encyclopedia Phys. Sci. Tech. 7: 719–72g.Google Scholar
7. Betten, J. (1973). Die Traglasttheorie der Statik als mathematisches Modell, Schweizerische Bauzeitung 91: 6–9. Habilitationsvortrag am 30.11.1971.Google Scholar
8. Betten, J. (1981). Representation of constitutive equations in creep mechanics of isotropic and anisotropic materials, in A. R. S. Ponter and D. R. Hayhurst (eds), Creep in Structures, Springer-Verlag, Berlin, Heidelberg, New York, pp. 179–201. Presented at the third IUATM Syposium on Creep in Structures in Leicester. UK. Sent. 1980
9. Betten, J. (1982a). Integrity basis for a second-order and a fourth-order tensor, Int. J. Math. Sci.5: 87–96.
10. Betten, J. (1982b). Net-stress analysis in creep mechanics, Ing.-Archiv 52: 405–419.
11. Betten, J. (1983a). Damage tensors and tensors of continuity in stress analysis, Z. Naturforschung 38a: 1383–1390.
12. Betten, J. (1983b). Damage tensors in continuum mechanics. J. MMécThéénrr Ann/ 1Google Scholar
13. Betten, J. (1984). Interpolation Methods for Tensor Functions, in X. J. R. Avula (ed.), Mathematical Modelling in Science and Technology, Pergamon Press, New York, pp. 52–57. Presented at the fourth Int. Conf. on Mathematical Modeling in Zürich. August 1983.Google Scholar
14. Betten, J. (1985). The classical plastic potential theory in comparison with the tensor function theory, Eng. Fracture Mech. 21: 641–652
15. Betten, J. (1986). Applications of tensor functions to the formulation of constitutive equations involving damage and initial anisotropy, Eng. Fracture Mech. 25: 573–584
16. Betten, J. (1987a). Tensor functions involving second-order and fourth-order argument tensors, in J. P. Boehler (ed.), Applications of Tensor Functions in Solid Mechanics, CISMCourse in Udine, July 1984, Springer-Verlag. Berlin. Heidelherg New VoorrkkGoogle Scholar
17. Betten, J. (1987b). Tensorrechnung fiir In2enieure. Teuhner-Verlao Stuttggart
18. Betten, J. (1989). Generalization of nonlinear material laws found in experiments to multiaxial states of stress, European J. of Mech., A/Solids 8: 325–339.
19. Betten, J. (1991a). Applications of tensor functions in creep mechanics, in M. Życzkowski (ed.), Creep in Structures, Springer-Verlag, Berlin, Heidelberg, New York, pp. 3–22. Presented as a ”general lecture” on the IUTAM-Symposium in Cracow/Poland, Sept. 1990.
20. Betten, J. (1991b). Recent advances in applications of tensor functions in solid mechanics, Adv. Mech. (Uspechi Mechaniki) 14: 79–109.
21. Betten, J. (1992). Applications of tensor functions in continuum damage mechanics, Int. J. Damage Mech. 1: 47–59.
22. Betten, J. (1998). Anwendungen von Tensorfunktionen in der Kontinuumsmechanik anisotroper Materialien, ZAMM 78: 507–521.
23. Betten, J. (2001a). Kontinuumsmechanik, Vol. 2. Aufl., Springer-Verlag, Berlin, Heidelberg, New York.
24. Betten, J. (2001b). Mathematical modelling of materials behaviour under creep conditions, Appl. Mech. Rev. 54(2): 107–132.
25. Betten, J. (2001c). Recent Advances in Applications of Tensor Functions in Continuum Mechanics, in T. Wu and E. Giessen v.d. (eds), Advances in Applied Mechanics, Vol. 37, pp. 277–363.Google Scholar
26. Betten, J. (2002). Creep Mechanics, Springer-Verlag, Berlin, Heidelberg, New York.
27. Betten, J., Breitbach, G. and Waniewski, M. (1990). Multiaxial anisotropic creep behaviour of rolled sheet-metals, ZAMM 70: 371–379.
28. Betten, J., El-Magd, E., Meydanli, S. and Palmen, P. (1995). Anisotropic damage growth under multi-axial stress (theory and experiments), Arch. Appl. Mech. 65: 110–120 and 121–132.
29. Betten, J. and Helisch, W. (1995). Integrity basis for a fourth-rank tensor, in N. Kluwer Academic Publishers (ed.), IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, pp. 37–42.Google Scholar
30. Betten, J. and Meydanli, S. (1995). Untersuchung des anisotropen Kriechverhaltens vorgeschädigter austenitischer Stähle, ZAMM 75: 181–182.Google Scholar
31. Betten, J., Sklepus, S. and Zolochevsky, A. (1998). A creep damage model for initially isotropic materials with different properties in tension and compression, Eng. Fracture Mech. 59: 623–641.
32. Betten, J., Sklepus, S. and Zolochevsky, A. (1999). A microcrack describtion of creep damage in crystalline solids with different behaviour in tension and compression, Int. J. Damage Mech. 8: 197–232.
33. Betten, J. and Waniewski, M. (1989). Multiaxial creep behaviour of anisotropic materials, Arch. Mech. 41: 679–695.Google Scholar
34. Betten, J. and Waniewski, M. (1995). Tensorielle Stoffgleichungen zur Beschreibung des anisotropen Kriechverhaltens isotroper Stoffe nach plastischer Verformung, ZAMM 75: 831–845.
35. Betten, J., Zolochevska, L. and Zolochevsky, A. (1999). Modelling of elastic deformation for initially anisotropic materials sustaining damage, Techn. Mech. 19: 211–222.Google Scholar
36. Bodner, S. and Hashin, Z. (1986). Mechanics of Damage and Fatigue, Pergamon Press, New York, Toronto.Google Scholar
37. Boehler, J. (1979). A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy, ZAMM 59: 157–167.
38. Boehler, J. (1987). Applications of Tensor Functions in Solid Mechanics, Springer-Verlag, Wien, New York.
39. Chaboche, J.-L. (1974). Une loi differentielle d’endommagement de fatigue avec cumulation non lineaire, Revue Francaise de Mecanique pp. 50–51.Google Scholar
40. Chaboche, J.-L. (1981). Continuous damage mechanics: A tool to describe phenomena before crack initiation, Nucl. Eng. Design 64: 233–247.
41. Chaboche, J.-L. (1984). Anisotropic creep damage in the framework of continuum damage mechanics, Nucl. Eng. Design 79: 304–319.
42. Chaboche, J.-L. (1988). Continuum damage mechanics - Part I: General concepts, Part 11: Damage growth, crack initiation, and crack growth, J. Appl. Mech. 55: 59–71.
43. Chaboche, J.-L. (1993). Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage, Int. J. Damage Mech. 2: 311–329.
44. Chaboche, J.-L. (1999). Creep and Damage in Materials and Structures, Springer-Verlag, Wien, New York, chapter Thermodynamically founded CDM Models for Creep and other Conditions, pp. 209–283.Google Scholar
45. Chaboche, J.-L., Lesne, P. and Moire, J. (1995). Continuum damage mechanics, anisotropy and damage deactivation for brittle materials like concrete and ceramic composites, Int. J. Damage Mech. 4: 5–22.
46. Chen, X. and Chow, C. (1995). On damage strain energy release rate Y, Int. J. Damage Mech. 4: 251–263.
47. Chow, C. and Lu, T. (1992). An analytical and experimental study of mixed-mode ductile fracture under nonproportional loading, Int. J. Damage Mech.1: 191–236.
48. Chow, C. and Wang, J. (1987). An anisotropic theory of elasticity for continuum damage mechanics, Int. J. Fracture 33: 3–16.
49. Chow, C. and Wang, J. (1988). Ductile fracture characterization with an anisotropic continuum damage theory, Eng. Fracture Mech. 30: 547–563.
50. Chrzanowski, M. (1973). The Description of Metallic Creep in the Light of Damage Hypothesis and Strain Hardening, Diss. hab., Politechnika Krakowska, Krakow.Google Scholar
51. Chrzanowski, M. (1976). Use of the damage concept in describing creep-fatigue interaction under prescribed stress, Int. J. Mech. Sci. 18: 69–73.
52. Coffin, L. (1954). A study of the effects of cyclic thermal stresses in a ductile metal, Trans. ASME (J. Appl. Mech.) 76.Google Scholar
53. Davison, L. and Kipp, M. (1978). Calculation of spall damage accumulation in ductile metals, in K. Kwata and Shiratori (eds), Proceedings IUTAM Symp. High Velocity Deformation of Solids, Tokyo, Japan 1977, Springer-Verlag, pp. 163–175.Google Scholar
54. Davison, L., Stevens, L. and Kipp, M. (1977). Theory of spall damage accumulation in ductile metals, J. Mech. Phys. Solids 25: 11–28.
55. Dragon, A. (1985). Plasticity and ductile fracture damage, Eng. Fracture Mech. 21: 875–892.
56. Dufailly, J. and Lemaitre, J. (1995). Modeling very low cycle fatigue, Int. J. Damage Mech. 4: 153–170.
57. Dunne, F. and Hayhurst, D. (1994). Efficient cycle jumping techniques for the modelling of materials and structures under cyclic mechanical and thermal loadings, European J. of Mech., A/Solids 13: 639–660.
58. Edward, G. and Ashby, M. (1979). Intergranular fracture during power-law creep, Acta Metall. 27: 1505–1518.
59. Evans, H. (1984). Mechanisms of Creep Rupture, Elsevier, London.Google Scholar
60. Fitzgerald, J. (1980). A tensorial Hencky measure of strain and strain rate for finite deformations, J. Appl. Phys. 51: 5111–5115.
61. Ganczarski, A. and Skrzypek, J. (1995). Concept of thermo-damage coupling in continuum damage mechanics, in R. Hetnarski and N. Noda (eds), First Int. Symp. Thermal Stresses1995, pp. 83–86.Google Scholar
62. Ganczarski, A. and Skrzypek, J. (1997). Optimal design of rotationally symmetric disks in thermo-damage coupling conditions, Techn. Mech. 17: 365–378.Google Scholar
63. Gittus, J. (1978). Irradiation Effects in Crystalline Solids, Applied Science Publ., London.Google Scholar
64. Goel, R. (1975). On the creep rupture of a tube and a spere, J. Appl. Mech. 43: 625–629.
65. Grabacki, J. (1994). Constitutive equations for some damaged materials, European J. of Mech., A/Solids 13: 51–71.
66. Grady, D. (1982). Local inertial effects in dynamic fragmentation, J. Mech. Phys. Solids 53: 322–325.Google Scholar
67. Hayakawa, K. and Murakami, S. (1998). Damage Mechanics in Engineering Materials, Elsevier, chapter Space of damage conjugate force and damage potential of elastic-plastic damage materials, pp. 27–44.
68. Hayhurst, D. (1972). Creep rupture under multiaxial states of stress, J. Mech. Phys. Solids 20: 381–390.
69. Hayhurst, D., Dimmer, P. and C.J., M. (1984). Development of continuum damage in the creep rupture of notched bars, Phil. Trans. R. Soc. London 311: 103.
70. Hayhurst, D. and Leckie, F. (1973). The effect of creep constitutive and damage relationships upon rupture time of solid circular torsion bar, Mech. Phys. Solids 21: 431–446.
71. Hayhurst, D., Trąmpczyńński, W. and Leckie, F. (1980). Creep rupture and nonproportional loading, Acta Metall. 28: 1171–1183.
72. Helle, S. and Tvergaard, V. (1988). Intergranular fracture under creep-fatigue interaction, Int. J. Damage Mech. 7: 3–23.Google Scholar
73. Ilschner, B. (1973). Hochtemperatur-Plastizität, Springer-Verlag, Berlin, Heidelberg, New York.
74. Jakowluk, A. (1993). Process of Creep and Fatigue in Materials, Wydawnictwa NaukowoTechniczne, Warszawa.Google Scholar
75. Johnson, A. (1960). Complex-stress creep of metals, Metall. Rev. 5: 447–506.Google Scholar
76. Johnson, J. (1981). Dynamic fracture and spallation in ductile solids, J. Mech. Phys. Solids 53: 2812–2825.Google Scholar
77. Kachanov, L. (1958). On the time failure under creep conditions, Izv. AN SSSR. Otd. tekh. nauk. MM 8: 26–31.Google Scholar
78. Kachanov, L. (1986). Introduction to Continuum Damage Mechanics, Martinus Nijhoff Publishers, Dordrecht.
79. Kattan, P. and Voyiadjis, G. (1990). A coupled theory of damage mechanics and finite strain elasto-plasticity - I: Damage and elastic deformations, Int. J. Eng. Sci. 28: 421–435.
80. Kaviany, M. (1995). Principles of Heat Transfer in Porous Media, Springer-Verlag, Berlin, Heidelberg, New York.
81. Krajcinovic, D. (1983). Constitutive equations for damaging materials, J. Appl. Mech. 50: 355–360.
82. Krajcinovic, D. (1984). Continuum damage mechanics, Appl. Mech. Rev. 37: 1–6.Google Scholar
83. Krajcinovic, D. (1996). Damage Mechanics, Elsevier, North-Holland, Amsterdam / NewYork / Tokyo.Google Scholar
84. Krajcinovic, D. and Fonseka, G. (1981). The continuous damage theory of brittle materials, J. Appl. Mech. 48: 809–815.
85. Krajcinovic, D. and Lemaitre, J. (1987). Continuum Damage Mechanics, Springer-Verlag, Wien, New York.Google Scholar
86. Ladeveze, P. (1990). A damage approach for composite structures theory and identification, in A. Vautrin and H. Sol (eds), Mechanical Identiiffcation of Composites, Elsevier, pp. 44–57.Google Scholar
87. Leckie, E and Hayhurst, D. (1974). Creep rupture of structures, Proc. Royal Soc. London 340: 323–347.
88. Leckie, F. and Hayhurst, D. (1977). Constitutive equations for creep rupture, Acta Metall. 25: 1059–1070.
89. Leckie, F. and Onat, E. (1981). Physical Nonlinearities in Structural Analysis, SpringerVerlag, SVaddr.Google Scholar
90. Leckie, F. and Ponter, A. (1974). On the state variable description of creeping materials, Ing.-Archiv 43: 158–167.
91. Lee, H., Peng, K. and Wang, J. (1985). An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates, Eng. Fracture Mech. 21: 1031–1054.
92. Lemaitre, J. (1985). A continuum damage mechanics model for ductile fracture, ASME J. Eng. Mat. Tech. 107: 83–89.
93. Lemaitre, J. (1992). A Course on Damage Mechanics, Springer-Verlag, Berlin, Heidelberg, New York.
94. Lemaitre, J. (1996). A Course on Damage Mechanics, 2nd edn, Springer-Verlag, Berlin, Heidelberg, New York.
95. Lemaitre, J. and Chaboche, J.-L. (1975). A nonlinear model of creep fatigue damage cumulation and interaction, in J. Hult (ed.), Proceedings IUTAM Symp Mechanics of ViscoElastic Media and Bodies, Gothenburg, Sweden, Springer-Verlag, pp. 291–301.Google Scholar
96. Lemaitre, J. and Chaboche, J.-L. (1990). Mechanics of Solid Materials, Cambridge University Press.
98. Litewka, A. (1985). Effective material constants for orthotropically damaged elastic solids, Arch. Mech. 37: 631–642.Google Scholar
99. Litewka, A. (1989). Creep rupture of metals under multi-axial state of stress, Arch. Mech. 41: 3–23.Google Scholar
100. Litewka, A. and Hult, J. (1989). One parameter cdm model for creep rupture prediction, European .J. of Mech., A/Solids 8: 185–200.
101. Litewka, A. and Morzyńńska, J. (1989). Theoretical and experimental study of fracture for a damaged solid, Res. Mechanica 27: 259–272.Google Scholar
102. Manson, S. (1979). Some useful concepts for the designer in treating cumulative damage at elevated temperature, ECM 3(1): 13–45.Google Scholar
103. Mango, J. (1985). Modelling of brittle and fatigue damage for elastic material by growth of microvoids, Eng. Fracture Mech. 21: 861–874.
104. Matzenmiller, A. and Sackmann, J. (1994). On damage induced anisotropy for fiber composites, Int. J. Damage Mech. 3: 71–86.
105. Monkman, F. and Grant, N. (1956). An empirical relationship between rupture life and minimum creep rate in creep-rupture tests, Proc. ASTM 56: 593–620.Google Scholar
106. Mou, Y. and Han, R. (1996). Damage evolution in ductile materials, Int. J. Damage Mech. 5: 241–258.
107. Murakami, S. (1983). Notion of continuum damage mechanics and its application to anisotropic creep damage theory, ASME J. Eng. Mat. Tech. 105: 99–105.
108. Murakami, S. (1987). Progress of continuum damage mechanics, JSME Int. J. 30: 701–710.
109. Murakami, S. (1988). Mechanical modeling of material damage, Trans. ASME (J. Appl. Mech.) 55: 280–286.
110. Murakami, S., Hayakawa, K. and Liu, Y. (1998). Damage evolution and damage surface of elastic-plastic-damage materials under multiaxial loading, Int. J. Damage Mech. 7: 103–128.
111. Murakami, S. and Kamiya, K. (1997). Constitutive and damage evolution equations of elasticbrittle materials based on irreversible thermodynamics, Int. J. Solids Struct. 39: 473–486.
112. Murakami, S. and Mizuno, M. (1992). A constitutive equation of creep, swelling and damage under neutron irradiation applicable to multiaxial and variable states of stress, Int. J. Solids Struct. 29: 2319–2328.
113. Murakami, S. and Ohno, N. (1981). A continuum theory of creep and creep damage, in A. R. S. Ponter and D. R. Hayhurst (eds), Creep in Structures 1980, Springer-Verlag, Berlin, Heidelberg, New York, pp. 422–444.
114. Murakami, S., Sanomura, Y. and Saitoh, R. (1986). Formulation of cross-hardening in creep and its effect on the creep damage process of copper, ASME J. Eng. Mat. Tech. 108: 167–173.
115. Murakami, S. and Sawczuk, A. (1981). A unifled approach to constitutive equations of inelasticity based on tensor function representations, Nucl. Eng. Design 65: 33–47.
116. Murzewski, J. (1992). Brittle and ductile damage of stochastically homogeneous solids, Int. J. Damage Mech. 1: 276–289.
117. Najar, J. (1994). Brittle residual strain and continuum damage at variable uniaxial loading, Int. J. Damage Mech. 3: 260–277.
118. Naumenko, K. (1996). Modellierung und Berechnung der Langzeitfestigkeit dünnwandiger Flächentragwerke unter Einbeziehung von Werkstoffkriechen und Schädigung, Preprint mbi-96–2, Otto-von-Guericke Universität Magdeburg.Google Scholar
119. Needleman, A., Tvergaard, V. and Giessen, E. (1995). Evolution of void shape and size in creeping solids, Int. J. Damage Mech. 4: 134–152.
120. Nemes, J., Efttis, J. and Randles, P. (1990). Viscoplastic constitutive modeling of high strainrate deformation, material damage and spall fracture, Trans. ASME (J. Appl. Mech.) 57: 282–291.
121. Onat, E. (1986). Representation of mechanical behavior in the presence of internal damage, Eng. Fracture Mech. 25: 605–614. Presented at the IUTAM Symposium on Mechanics of Damage and Fatigue, Haifa and Tel Aviv, Israel, 1985.
122. Onat, E. and Leckie, F. (1988). Representation of mechanical behavior in the presence of changing internal structure, Trans. ASME (J. Appl. Mech.) 55: 1–10.
123. Perzyna, P. (1986). Internal state variable description of dynamic fracture of ductile solids, Int. J. Solids Struct. 22: 797–818.
124. Qi, W. (1998). Modellierung der Kriechschädigung einkristalliner Superlegierungen im Hochtemperaturbereich, Fortschritt-Berichte VDI 18: Mechanik I Bruchmechanik, Düsseldorf 230.Google Scholar
125. Qi, W. and Bertram, A. (1997). Anisotropic creep damage modeling of single crystal superalloys, Techn. Mech. 17: 313–332.Google Scholar
126. Rabotnov, Y. (1968). Creep rupture, in M. Hetenyi and H. Vincenti (eds), Appl. M.ch. Conf, Stanford University, Palo Alto, pp. 342–349.Google Scholar
127. Rabotnov, Y. (1969). Creep Problems in Structural Members, North-Holland, Amsterdam/London.
128. Rice, J. (1970). On the structure of stress-strain relations for time-dependent plastic deformations in metals, Trans. ASME (J. Appl. Mech.) 37: 728–737.
129. Riedel, H. (1987). Fracture at High Temperatures, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
130. Rivlin, R. (1955). Further remarks on the stress-deformation relations for isotropic materials, J. Rat. Mech. Anal. 4: 681–702.
131. Rivlin, R. (1970). Non-Linear Continuum Theories in Mechanics and Physics and their Applications, Technical report, Centro Internazionale Mathematico Estivo (CIME), Edizione Cremonense, Roma.Google Scholar
132. Saanouni, K., Forster, C. and Ben Hatira, F. (1994). On the anelastic flow with damage, Int. J. Damage Mech. 3: 140–169.
133. Sedov, L. (1966). Foundations of the Non-Linear Mechnics of Continua, Pergamon Press, Oxford.Google Scholar
134. Sidoroff, F. (1981). Description of anisotropic damage application to elasticity, IUTAM Colloquium on Physical Nonlinearities in Structural Analysis, Springer-Verlag, pp. 237–244.Google Scholar
135. Skoczeńń, B. (1996). Generalization of the Coffin equations with respect to the effect of large mean plastic strain, ASME J. Eng. Mat. Tech. pp. 387–393.Google Scholar
136. Skrzypek, J. (1999). Creep and Damage in Materials and Structures, Springer-Verlag, Wien, New York, chapter Material Damage Models for Creep Failure Analysis and Design of Structures, pp. 97–166.
137. Skrzypek, J. and Ganczarski, A. (1998). Modeling of damage effect on heat transfer in timedependent non-homogeneous solids, J. of Thermal Stresses 21: 205–231.
138. Skrzypek, J. and Ganczarski, A. (1999). Modeling of Material Damage and Failure of Structures-Theory and Applications, Springer-Verlag, Berlin, Heidelberg, New York.
139. Sobotka, Z. (1984). Rheology of Materials and Engineering Structures, Vydala Academia vêd, Praha.Google Scholar
140. Spencer, A. (1971). Theory of Invariants, Continuum Physics, Academic Press, New York, London, pp. 239–353.Google Scholar
141. Stigh, U. (1985). Material Damage and Constitutive Properties, Chalmers University of Technology, Göteborg, Sweden.Google Scholar
142. Tetelman, A. and McEvily, A. (1970). Fracture of Structural Materials, John Wiley.Google Scholar
143. Trąmpczyńński, W. Hauhurst, D. and Leckie, E (1981). Creep rupture of copper and aluminium under non-proportional loading, J. Mech. Phys. Solids 29: 353–374.
144. Truesdell, C. and Noll, W. (1965). The non-linear field theories of mechanics, in S. Flügge (ed.), Handbuch der Physik, Vol. 111/3, Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
145. Tvergaard, V. (1988). Material failure by void coalescence in localized shear bands, DCAMM Report 221, Tech Univ of Denmark, Lyngby. pp. 1–26.Google Scholar
146. Voyiadjis, G. and Kattan, P. (1990). A coupled theory of damage mechanics and finite strain elasto-plasticity - II: Damage and finite strain plasticity, Int. J. Eng. Sci. 28: 505–524.
147. Voyiadjis, G. and Kattan, P. (1992). A plasticity-damage theory for large deformation of solids, Part I: Theoretical formulation, Int. J. Eng. Sci. 30: 1089–1108.
148. Voyiadjis, G. and Venson, A. (1995). Experimental damage investigation of a SiC-Ti aluminium metal matrix composite, Int. J. Damage Mech. 4: 338–361.
149. Wang, C.-C. (1971). Representations for isotropic functions, Arch. Rat. Mech. and Anal. 43: 392–395.
150. Wang, J. (1992). Low cycle fatigue and cycle dependant creep with continuum damage mechanics, Int. J. Damage Mech. 1: 237–244.
151. Waniewski, M. (1984). The influence of direction and value of plastic prestrain on steadystate creep rate using the combined isotropic-kinematic hardening rule, Eng. Trans. (Rozpr. Inz.) 23: 4.Google Scholar
152. Waniewski, M. (1985). A simple law of steady-state creep for material with anisotropy induced by plastic prestraining, Ing.-Archiv 55: 368–375.
153. Zheng, Q.-S. (1994). Theory of representation for tensor functions - a unified invariant approach to constitutive equations, Appl. Mech. Rev. 47: 545–587.
154. Zheng, Q.-S. and Betten, J. (1995). On the tensor function representation of 2nd-order and 4th-order tensors: Part I, ZAMM 75: 269–281.
155. Zheng, Q.-S. and Betten, J. (1996). On damage effective stress and equivalence hypothesis, Int. J. Damage Mech. 5: 219–240.
156. Zheng, Q.-S., Betten, J. and Spencer, A. (1992). The formulation of constitutive equations for fibre-reinforced composites in plane problems: Part I, Arch. Appl. Mech. 62: 530–543.
157. Życzkowski, M. (1988). Optimal structural design under creep conditions, Appl. Mech. Rev. 41: 453–461.
158. Życzkowski, M. (1996). Optimal structural design under creep conditions, Appl. Mech. Rev. 49: 433–446.