Skip to main content

Genotoxicity is a priority measurement for assessment and communication of genotoxic effects (DNA strand breaks) in the water matrix and the trophic levels of the ecosystem (Eco-Genotoxicity). Genotoxicity induction with single substances and surface water samples shows clearly the good sensitivity and reproducibility of the DNA-unwinding assay. The DNA alkaline unwinding assay detects levels of DNA fragmentation; the relative numbers of DNA strand breaks are described as the “-log F -value.” The results of DNA fragmentation in genotoxin-exposed cells of a RTG-2 cell line, the mussel Dreissena polymorpha, and fish larvae of the fish species Danio rerio are discussed. The early life stages of the fish species D. rerio show the significant high sensitivity and reproducibility of the DNA alkaline unwinding assay. As a reference method for the validation of genotoxicity pulsed-field gel electrophoresis (PFGE) was investigated. The LOEC (Lowest Observed Effect Concentration) of the genotoxin 4-nitroquinoline- N -Oxid (4-NQO) was 78 μg l−1 for both test organisms, cell lines and fish larvae. Native surface water samples from representative stations on the River Rhine and the River Elbe significantly induced genotoxicity in the RTG-2 fish cell line and in fish larvae from D. rerio. An increased sensitivity was measured in D. rerio fish larvae 48 h after hatching during 3 h-exposure. The LOEC of the mussel D. polymorpha exposed in river water was less sensitive in the DNA alkaline unwinding assay: LOEC = 250 μg 1−1 4-NQO. In coastal waters the marine mussel Mytilus edulis is a good indicator organism for the detection of genotoxic effects and biotoxins. Beside immunotoxicity also genotoxic effects (DNA strand breaks) are found especially in UV-B (ultraviolet-B) exposed mussels (Luckas, B., J. Dahlmann, K.Erler, G. Gerdts, N. Wasmund, C. Hummert, P.-D. Hansen (2005) An Overview on Key Phytoplankton Toxins and their recent occurrence in North Sea and Baltic. Environmental Toxicology 20(1):1–17). To validate the influence of UV-B on exposed mussels (hepatopancreas and mussel hemocytes) UV-B exposure was investigated (Figs. 1 and 2) to induce and demonstrate eco-genotoxic effects in mussels and fish embryos. The fish eggs of the marine fish species Limanda limanda were experimentally exposed to UV-B radiation in a solar radiation simulator onboard the research vessel RV Walther Herwig III. The experimental design attempted to simulate present and future conditions in the context of eco-genotoxicity and increased UV-B exposure due to northern hemisphere ozone loss. The impact of low dosages of UV-B indicates an important genotoxic and ecological threat concerning ecosystem integrity status at the population level. In our experiments embryos of L. limanda taken from sites located along a gradient of chemical stress in the German Bight were exposed to solar ultraviolet-B light and allowed to recover for a defined period. The involved research groups from different disciplines and research organizations showed a significant time and dosage-dependent influence of UV-B radiation on mortality and sublethal eco-genotoxic effects (DNA damage in the environment). Our hypothesis was that there might be an interaction between exposure to chemical contaminants and the ability of embryos to recover from UV-induced genotoxic effects by repairment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Houk VS, Waters MD (1996) Genetic toxicology and risk assessment of complex environmental mixtures. Drug Chem Toxicol 19:187–219

    Article  CAS  Google Scholar 

  2. Hansen P-D (2008) Biosensors and ecotoxicology. Eng Life Sci 8:1–7

    Article  Google Scholar 

  3. Hansen P-D (2008) Biosensors for environmental and human health. In: Young J Kim, U. Platt (eds) Advanced environmental monitoring, Sect. 4, Chap. 23. Springer, Heidelberg, New York, pp 297–311

    Google Scholar 

  4. Rao SS, Burnison BK, Efler S, Wittekindt E, Hansen P-D, Rokosh DA (1995) Assessment of genotoxic potential of pulp mill effluent and an effluent fraction using AMES- mutagenicity and umuC-genotoxicity assays. Environ Toxicol Water Qual 10:301–305

    Article  CAS  Google Scholar 

  5. Rao SS, Neheli TA, Carey JH, Herbert A, Hansen P-D (1996) DNA alkaline unwinding assay for monitoring the impact of environmental genotoxins. Environ Toxicol Water Qual 11:351–354

    Article  CAS  Google Scholar 

  6. De Maagd PGJ, Vethaak AD (1998) Biotransformation of PAHs and their carcinogenic effects in fish. In: Neilson AH (eds) The Handbook of environmental chemistry, 3J PAHs and related compounds. Springer, Berlin, pp 265–310

    Google Scholar 

  7. Hansen P-D, Herbert A (1998) Small-scale in vitro genotoxicity tests for bacteria and invertebrates. In: Wells PG, Lee K, Blaise C (eds) Microscale aquatic toxicology — advances, techniques and practice. CRC, Florida, pp 237–252

    Google Scholar 

  8. De Maagd PGJ, Tonkes M (2000) Selection of genotoxicity tests for risk assessment of effluents. Environ Toxicol 15(2):81–90

    Article  Google Scholar 

  9. Dizer H, Wittekindt E, Fischer B, Hansen P-D (2002) The cytotoxic and genotoxic potential of surface water and wastewater effluents as determined by bioluminescence, umu-assays and selected biomarkers. Chemosphere 46:225–233

    Article  CAS  Google Scholar 

  10. Hansen P-D (2003) Biomarkers. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors, principles, concepts and applications. Elsevier, Amsterdam, pp 203–220

    Chapter  Google Scholar 

  11. Hansen P-D, Blasco J, De Valls A, Poulsen V, van den Heuvel-Greve M (2007) Biological analysis (Bioassays, Biomarkers, Biosensors) In: Damia Barceló and Mira Petrovic (eds) Sustainable management of sediment resources, Vo l 2, Sediment quality and impact assessment of pollutants. Elsevier, Amsterdam, pp 131–157

    Google Scholar 

  12. Maron DM, Ames BN (1983) Revised methods for the salmonella mutagenicity test. Mutat Res 113:173–215

    CAS  Google Scholar 

  13. Quilardet P, de Bellecombe C, Hofnung M (1985) The SOS chromotest, a colorimetric bacterial assay for genotoxins: validation study with 83 compounds. Mutat Res 147:79–95

    Google Scholar 

  14. Côté C, Blaise C, Delisle C, Meighen EA, Hansen P-D (1995) A miniaturized Ames test employing bioluminescent strains of Salmonella typhimurium. Mutat Res 345:137–146

    Article  Google Scholar 

  15. Oda Y, Nakamura S, Oki I, Kato T, Shinagawa H (1985) Evaluation of the new system (Umu-test) for the detection of environmental mutagens and carcinogens. Mutat Res 147:219–229

    CAS  Google Scholar 

  16. Hansen P-D (1996) Bioassays on sediment toxicity. In: Calmano and Förster (eds) Sediments and toxic substances — environmental effects and ecotoxicity. Springer, Berlin, Heidelberg, pp 179–196

    Google Scholar 

  17. ISO 13829 (2000) Determination of the genotoxicity using the umu-test

    Google Scholar 

  18. Nacci D, Nelson S, Nelson W, Jackim E (1992) Application of the DNA alkaline unwinding assay to detect DNA strand breaks in marine bivalves. Mar Environ Res 33:83–100

    Article  CAS  Google Scholar 

  19. Herbert A, Hansen P-D (1998) Genotoxicity in fish eggs/embryos. In: Wells PG, Lee K, Blaise C (eds) Microscale aquatic toxicology — advances, techniques and practice. CRC, Florida, pp 491–505

    Google Scholar 

  20. Kanter P-M, Schwarz HS (1978) A hydroxylapatite batch assay for quantitation of cellular DNA damage. Anal Biochem 97:77–84

    Article  Google Scholar 

  21. Ahnström G, Erixon K (1981) Measurement of strand breaks by alkaline denaturation and hydroxyapatite chromatography. In: Friedberg EC, Hanawalt PC (eds) DNA repair: a laboratory manual of research procedures. Marcel Dekker, New York, pp 403–418

    Google Scholar 

  22. Holmberg M, Lageberg M, Niejahr B, Rödin L (1988) Simultaneous detection of DNA strand breaks and unscheduled DNA synthesis in mutagen-treated human lymphocytes in the absence of hydroxyurea. Mutat Res 202:111–118

    CAS  Google Scholar 

  23. Shugart LR (1988) Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay. Aquat Toxikol 13:43–52

    Article  CAS  Google Scholar 

  24. Dethlefsen V, von Westernhagen H, Tüg H, Hansen P-D, Dizer H (2001) Influence of solar ultraviolet-B on pelagic fish embryos: osmolality, mortality and viable hatch, Helgol. Mar Res 55:45–55

    Google Scholar 

  25. Hansen P-D, Sherry J, Dizer H, Tüg H, Dethlefsen V, von Westernhagen H (2009) Influence of solar ultraviolet-B on pelagic fish embryos: DNA Fragmentation and DNA Thymindimers, Journal of Applied Idthyology, 25, 5 in press

    Google Scholar 

  26. Nagel R (1993) Fish and environmental chemicals — a critical evaluation of tests. In: Braunbeck T, Hanke W, Segner H (eds) Fish. Ecotoxicology and ecophysiology, vol 1. VCH Verlagsgesellschaft, Weinheim, pp 47–156

    Google Scholar 

  27. Belitzky GA, Lytcheva TA, Khitrovo IA, Safaev RD, Zhurkov VS, Vyskubenko IF, Sytshova LP, Salamatova OG, Feldt EG, Khudoley VV, Mizgirev IV, Khovanova EM, Lugnivenko EG, Tanirbergenov TB, Malinovska KI, Revazova Yu A, Ingel FI, Bratslavsky VA, Terentyev AB, Shapiro AA, Williams GM (1994) Genotoxicity and carcinogenicity testing of 1,2-dibromo-propane and 1,1,3-tribromopropane in comparison to 1,2-dibromo-3-chloropropane. Cell Biol Toxicol 10(4):265–279

    Article  Google Scholar 

  28. Troxel CM, Reddy AP, O'Neal PE, Hendricks JD, Bailey GS (1997) In vivo aflatoxin B1 metabolism and hepatic DNA adduction in Zebrafish (Danio rerio). Toxicol Appl Pharmacol 143:213–220

    Article  CAS  Google Scholar 

  29. Troxel CM, Buhler DR, Hendricks JD, Bailey GS (1997) CYP1A Induction by β-Naphthoflavone, Aroclor 1254, and 2,3,7,8-Tetrachlorodibenzo-p-dioxin and it's influence on Aflatoxin B1 metabolism and DNA adduction in Zebrafish (Danio rerio). Toxicol Appl Pharmacol 146:69–78

    Article  CAS  Google Scholar 

  30. Garberg P, Akerblom EL, Bolcsfoldi G (1988) Evaluation of a genotoxicity test measuring DNA-strand breaks in mouse lymphoma cells by alkaline unwinding and hydroxyapatite elution. Mutat Res 203:155–176

    CAS  Google Scholar 

  31. Dragani AT, Barale R, Parodi S, Taningher M, Zucconi D, Della Porte G (1990) Negative results of short-term genotoxicity tests with 1,4-bis82-(3,5-dichloropyridyloxy)]benzene. Carcinogenesis 11:1153–1157

    Article  CAS  Google Scholar 

  32. Nygren J, Cedervall BS, Eriksson M, Dusinska M, KolmanA(1994) Induction of DNA strand breaks by ethylene oxide in human diploid fibroblasts. Environ Mol Mutat 24:161–167

    Article  CAS  Google Scholar 

  33. Duis K, Unruh E, Hansen P-D (1996) Validation of a cytotoxicity assay with the Fish cell line RTG2 as an replacement of the fish assay (Validierung eines Zytotoxizitätstests als Ersatzmethode zum Fischtest nach DIN 38412 Teil 31: Phase II; Final Report, BMBF AZ. 0310314B

    Google Scholar 

  34. Reincke H (1992) Biological effect monitoring in the river Elbe using the zebra mussel Dreissena polymorpha. In: Neumann D, Jenner HA (eds) The zebra mussel Dreissena poly-morpha. Gustav Fischer Verlag, Germany

    Google Scholar 

  35. Dizer H, Unruh E, Bissinger V, Hansen P-D (2001) Investigation of genotoxicity and immu-notoxicity for monitoring marine pollution in the Baltic sea and Mediterranean Sea. In: Garrigues Ph, Barth H, Walker CH, Narbonne J-F (eds) Biomarkers in marine organisms: a practical approach. Elsevier, Amsterdam, pp 237–257

    Chapter  Google Scholar 

  36. Borcherding J (1992) Morphometric changes in relation to the annual reproductive cycle in Dreissena polymorpha — a prerequisite for biomonitoring studies with Zebra Mussels. In: Neumann D, Jenner HA (eds) The Zebra Mussel Dreissena polymorpha. Limnologie aktuell, Bd. 4, Gustav Meyer Verlag, Stuttgart, pp 87–99

    Google Scholar 

  37. Neumann D, Jenner HA(eds) (1992) The zebra mussel Dreissena polymorpha. Gustav Fischer Verlag, Germany

    Google Scholar 

  38. Hochegger H, Sonoda E, Takeda S (2004) Post-replication repair in DT 40 cells: translesion polymerases versus recombinases. BioEssays 26:151–158

    Article  CAS  Google Scholar 

  39. Luckas B, Dahlmann J, Erler K, Gerdts G, Wasmund N, Hummert C, Hansen P-D (2005) An overview on key phytoplankton toxins and their recent occurrence in North Sea and Baltic. Environ Toxicol 20(1):1–17

    Article  CAS  Google Scholar 

  40. ISO 16240 (2005) Determination of the genotoxicity of water – Salmonella/microsome test (AMES-test)

    Google Scholar 

  41. ISO 21427 — 2 (2006) Evaluation of genotoxicity by measurement of the induction of micro-nuclei — Part 2: “Mixed population” method using the cell line V 79

    Google Scholar 

  42. Bilitewski U, Brenner-Weiss G, Hansen P-D, Hock B, Meulenberg E, Müller G, Obst U, Sauerwein H, Scheller FW, Schmid R, Schnabl G, Spener F (2000) Bioresponse-linked instrumental analysis. Trends Anal Chem 19(7):428–433

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hansen, P.D. et al. (2009). Genotoxicity in the Environment (Eco-Genotoxicity). In: Barceló, D., Hansen, PD. (eds) Biosensors for Environmental Monitoring of Aquatic Systems. The Handbook of Environmental Chemistry, vol 5J. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36253-1_8

Download citation

Publish with us

Policies and ethics