Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 127))

Abstract

Abstract. For a normal distribution, the probability density p(x) is everywhere positive, so in principle, all real numbers are possible. In reality, the probability that a random variable is far away from the mean is so small that this possibility can be often safely ignored. Usually, a small real number k is picked (e.g., 2 or 3); then, with a probability Po(k)≈ 1 (depending on k), the normally distributed random variable with mean a and standard deviation σ belongs to the interval \(a = [a - k\cdot\sigma ,a + k\cdot\sigma \)

The actual error distribution may be non-Gaussian; hence, the probability P(k) that a random variable belongs to a differs from Po(k). It is desirable to select k for which the dependence of P o (k) on the distribution is the smallest possible. Empirically, this dependence is the smallest for k є [1.5, 2.5]. In this paper, we give a theoretical explanation for this empirical result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer, W. H. (1991) CRC Standard Mathematical Tables and Formulae, CRC Press, Boca Raton, FL.

    Google Scholar 

  2. Clifford, A. A. (1973) Multivariate Error Analysis, Wiley, New York.

    Google Scholar 

  3. Fuller, W. A. (1987) Measurement Error Models, Wiley, New York.

    Book  MATH  Google Scholar 

  4. H. G. Hecht, H. G. (1990) Mathematics in Chemistry. An Introduction to Modern Methods, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  5. Itô, K., ed. (1993) Encyclopedic Dictionary of Mathematics, MIT Press, Cambridge, MA.

    Google Scholar 

  6. Klir, G., Yuan, B. (1995) Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall, Upper Saddle River, NJ.

    Google Scholar 

  7. Kruse, R., Borgelt, C., and Nauck, D. (1999) Fuzzy data analysis: challenges and perspectives, Proceedings of the 8th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’99), Seoul, Korea, August 22–25, 1999, 3, 12111216.

    Google Scholar 

  8. Nguyen, H. T., Kreinovich, V. (1997) Applications of Continuous Mathematics to Computer Science, Kluwer, Dordrecht.

    MATH  Google Scholar 

  9. Nguyen, H. T., Walker, E. A. (1999) First Course in Fuzzy Logic, CRC Press, Boca Raton, FL.

    Google Scholar 

  10. Novitskii, P. V., Zograph, I. A. (1991) Estimating the Measurement Errors, Energoatomizdat, Leningrad (in Russian).

    Google Scholar 

  11. Orlov, A. I. (1991) How often are the observations normal? Industrial Laboratory 57, No. 7, 770–772.

    Google Scholar 

  12. Osegueda, R. A., Ferregut, C., Kreinovich, V., Seetharami, S., Schulte, H. (2000) Fuzzy (granular) levels of quality, with applications to data mining and to structural integrity of aerospace structures, Proceedings of the 19th International Conference of the North American Fuzzy Information Society NAFIPS’2000, Atlanta, Georgia, July 13–15, 2000 (to appear).

    Google Scholar 

  13. Rabinovich, S. (1993) Measurement Errors: Theory and Practice, American Institute of Physics, New York.

    Google Scholar 

  14. Wadsworth, H. M. Jr., ed. (1990) Handbook of Statistical Methods for Engineers and Scientists, McGraw-Hill Publishing Co., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, H.T., Kreinovich, V., Solopchenko, G.N., Tao, CW. (2003). Why Two Sigma? A Theoretical Justification. In: Reznik, L., Kreinovich, V. (eds) Soft Computing in Measurement and Information Acquisition. Studies in Fuzziness and Soft Computing, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36216-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36216-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53509-3

  • Online ISBN: 978-3-540-36216-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics