Skip to main content

The Nature and Composition of the Inorganic Phase

  • Chapter
Biological Calcification
  • 740 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed A (1975) Calcification in human breast carcinomas: ultrastructural observations. J Pathol 117:247–251

    Article  PubMed  CAS  Google Scholar 

  • Aizenberg J, Lambert G, Addadi L, Weiner S (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8:222–226

    Article  CAS  Google Scholar 

  • Aizenberg J, Lambert G, Weiner S, Addadi L (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. J Am Chem Soc 124:32–39

    Article  PubMed  CAS  Google Scholar 

  • Albright JA, Grunt JA (1971) Studies of patients with osteogenesis imperfecta. J Bone Joint Surg 53A:1415–1425

    Google Scholar 

  • Ali SY, Wisby A, Gray JC (1978) Electron probe analysis of cryosections of epiphyseal cartilage. Metab Bone Dis Rel Res 1:97–103

    Article  Google Scholar 

  • Aoba T (1996) Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec 245:208–218

    Article  PubMed  CAS  Google Scholar 

  • Aoba T, Komatsu H, Shimazu Y, Yagishita H, Taya Y (1998) Enamel mineralization and an initial crystalline phase. Connect Tissue Res 38:129–137

    PubMed  CAS  Google Scholar 

  • Arakaki A, Webb J, Matsunaga T (2002) A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J Biol Chem 278:8745–8750

    Article  PubMed  CAS  Google Scholar 

  • Arends J, van den Berg PJ, Jongebloed WL (1975) Dissolution of hydroxyapatite and fluorapatite single crystals. In: Colloques Internationaux C.N.R.S. (ed) Physico-chimie et cristallographie des apatites d’intérét biologique. Centre National de la Recherche Scientifique, Paris, pp 389–395

    Google Scholar 

  • Arnold S, Plate U, Wiesmann H-P, Straatmann U, Kohl H, Höhling H-J (2001) Quantitative analyses of the biomineralization of different hard tissues. J Microsc 202:488–494

    Article  PubMed  CAS  Google Scholar 

  • Arnott HJ (1976) Calcification in higher plants. In: Watabe N, Wilbur KM (eds) The mechanisms of calcification in the invertebrates and plants. University of South Carolina Press, Columbia, pp 55–78

    Google Scholar 

  • Arnott HJ, Pautard FGE (1967) Osteoblast function and fine structure. Israel J Med Sci 3:657–670

    Google Scholar 

  • Arnott HJ, Pautard FGE (1970) Calcification in plants. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 375–446

    Google Scholar 

  • Ascenzi A, Benedetti EL (1959) An electron microscopic study of the foetal membranous ossification. Acta Anat 37:370–385

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E (1966) The osteon calcification as revealed by the electron microscope. In: Fleisch H, Blackwood HJJ, Owen M (eds) Calcified tissues 1965. Springer, Berlin Heidelberg New York, pp 142–146

    Google Scholar 

  • Ascenzi A, Bonucci E, Steve Bocciarelli D (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287–303

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi A, Bonucci E, Ostrowski K, Sliwowski A, Dziedzic-Goclawska A, Stachowicz W, Michalik J (1977) Initial studies on the crystallinity of the mineral fraction and ash content of isolated human and bovine osteons differing in their degree of calcification. Calcif Tissue Res 23:7–11

    Article  PubMed  CAS  Google Scholar 

  • Bale WF (1940) A comparative roentgen-ray diffraction study of several natural apatites and the apatite-like constituent of bone and tooth substances. Am J Roentgenol 93:735–774

    Google Scholar 

  • Bargman GJ, Mackler B, Shepard TH (1972) Studies of oxidative energy deficiency I. Achondroplasia in the rabbit. Arch Biochem Biophys 150:137–146

    Article  PubMed  CAS  Google Scholar 

  • Batina N, Renugopalakrishnan V, Casillas Lavín PN, Guerrero JCH, Morales M, Garduño-Juárez R, Lakka SL (2004) Ultrastructure of dental enamel afflicted with hypoplasia: an atomic force microscopic study. Calcif Tissue Int 74:294–301

    Article  PubMed  CAS  Google Scholar 

  • Bauze RJ, Smith R, Francis MJO (1975) A new look at osteogenesis imperfecta. A clinical radiological and biochemical study of forty-two patients. J Bone Joint Surg 57B:2–12

    Google Scholar 

  • Becker GL, Termine JD, Eanes ED (1976) Comparative studies of intra-and extramitochondrial calcium phosphates from the hepatopancreas of the blue crab (Callinectes sapidus). Calcif Tiss Res 21:105–113

    Article  CAS  Google Scholar 

  • Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc London B 264:461–465

    Article  CAS  Google Scholar 

  • Bergdahl L, Boquist L (1973) Secondary hypercalcemic hyperparathyrodism. Virchows Arch Abt A Path Anat 358:225–239

    Article  CAS  Google Scholar 

  • Bestetti-Bosisio M, Cotelli F, Schiaffino E, Sorgato G, Schmid C (1984) Lung calcification in long-term dialysed patients: a light and electronmicroscopic study. Histopathology 8:69–79

    PubMed  CAS  Google Scholar 

  • Betts F, Trotta R, Goldberg MR, Posner AS (1979) Non-apatite mineral in actively calcifying tissue. Orthop Transact 3:201–202

    Google Scholar 

  • Bigi A, Cojazzi G, Panzavolta S, Ripamonti A, Roveri N, Romanello M, Noris Suarez K, Moro L (1997) Chemical and structural characterization of the mineral phase from cortical and trabecular bone. J Inorg Biochem 68:45–51

    Article  PubMed  CAS  Google Scholar 

  • Blakey PR, Lockwood P (1968) The environment of calcified components in keratins. Calcif Tissue Res 2:361–369

    Article  PubMed  CAS  Google Scholar 

  • Blakey PR, Earland DC, Stell JGP (1963) Calcification of keratin. Nature 198:481

    Article  CAS  Google Scholar 

  • Blumenthal NC, Betts F, Posner AS (1975) Effect of carbonate and biological macromolecules on formation and properties of hydroxyapatite. Calcif Tissue Res 18:81–90

    Article  PubMed  CAS  Google Scholar 

  • Blumenthal NC, Betts F, Posner AS (1977) Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res 23:245–250

    Article  PubMed  CAS  Google Scholar 

  • Bohic S, Heymann D, Pouëzat JA, Gauthier O, Daculsi G (1998) Transmission FT-IR microspectroscopy of mineral phases in calcified tissues. C R Acad Sci Paris 321:865–876

    PubMed  CAS  Google Scholar 

  • Boivin G, Tochon-Danguy HJ (1976) Étude chez le rat d’une calcinose cutanée induite per calciphylaxie locale II. Aspects biophysiques de la substance minérale. Ann Biol Anim Bioch Biophys 16:869–878

    CAS  Google Scholar 

  • Boivin G, Walzer C, Baud CA (1987) Ultrastructural study of the long-term development of two experimental cutaneous calcinoses (topical calciphylaxis and topical calcergy) in the rat. Cell Tissue Res 247:525–532

    Article  PubMed  CAS  Google Scholar 

  • Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    Article  PubMed  CAS  Google Scholar 

  • Bonar LC, Shimizu M, Roberts JE, Griffin RG, Glimcher MJ (1991) Structural and composition studies on the mineral of newly formed dental enamel: a chemical, X-ray diffraction, and 31P and proton nuclear magnetic resonance study. J Bone Miner Res 6:1167–1176

    PubMed  CAS  Google Scholar 

  • Bonucci E (2002) Crystal ghosts and biological mineralization: fancy spectres in an old castle, or neglected structures worthy of belief? J Bone Miner Metab 20:249–265

    Article  PubMed  Google Scholar 

  • Bonucci E, Graziani G (1976) Comparative thermogravimetric, X-ray diffraction and electron microscope investigations of burnt bones from recent, ancient and prehistoric age. Rend Fis Acc Lincei 59:517–532

    Google Scholar 

  • Bonucci E, Sadun R (1972) An electron microscope study on experimental calcification of skeletal muscle. Clin Orthop Relat Res 88:197–217

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E, Sadun R (1973) Experimental calcification of the myocardium. Ultrastructural and histochemical investigations. Am J Pathol 71:167–192

    PubMed  CAS  Google Scholar 

  • Bonucci E, Sadun R (1975) Dihydrotachysterol-induced aortic calcification. A histochemical and ultrastructural investigation. Clin Orthop Relat Res 107:283–294

    Article  PubMed  Google Scholar 

  • Bonucci E, Derenzini M, Marinozzi V (1973) The organic-inorganic relationship in calcified mitochondria. J Cell Biol 59:185–211

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E, De Matteis A, Anceschi C (1979) Histochemical and electron microscopical investigations on the calcified keratin in the horn pearls of a glans carcinoma (calcified keratin). Basic Appl Histochem 23:93–102

    PubMed  CAS  Google Scholar 

  • Bonucci E, Lozupone E, Silvestrini G, Favia A, Mocetti P (1994a) Morphological studies of hypomineralized enamel of rat pups on calcium-deficient diet, and of its changes after return to normal diet. Anat Rec 239:379–395

    Article  PubMed  CAS  Google Scholar 

  • Bonucci E, Silvestrini G, Ballanti P, Della Rocca C, Mocetti P (1994b) Dihydrotachysterol-induced lung calcification in the rat. It J Miner Electrol Metab 8:12–22

    Google Scholar 

  • Borle AB (1973) Calcium metabolism at the cellular level. Fed Proc 32:1944–1950

    PubMed  CAS  Google Scholar 

  • Boskey AL, Posner AS (1974) Magnesium stabilisation of amorphous calcium phosphate: a kinetic study. Mater Res Bull 9:907–916

    Article  CAS  Google Scholar 

  • Boskey AL, Vigorita VJ, Sencer O, Stuchin SA, Lane JM (1983) Chemical, microscopic, and ultrastructural characterization of the mineral deposits in tumoral calcinosis. Clin Orthop Relat Res 178:258–269

    PubMed  CAS  Google Scholar 

  • Boström K (2001) Insights into the mechanism of vascular calcification. Am J Cardiol 88:20E–22E

    Article  PubMed  Google Scholar 

  • Boström K, Demer LL (2000) Regulatory mechanisms in vascular calcification. Crit Rev Eukaryot Gene Expr 10:151–158

    PubMed  Google Scholar 

  • Boyan BD, Swain LD, Everett MM, Schwartz Z (1992) Mechanisms of microbial mineralization. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 129–156

    Google Scholar 

  • Brandt G, Bässler R (1972) Die Wirkung der experimentellen Hypercalcämie durch Dihydrotachysterin auf Drüsenfunktion und Verkalkungsmuster der Mamma. Licht-, elektronenmikroskopische und chemisch-analytische Untersuchungen. Virchows Arch Abt A Path Anat 356:155–172

    Article  CAS  Google Scholar 

  • Brès EF, Barry JC, Hutchison JL (1985) High-resolution electron microscope and computed images of human tooth enamel crystals. J Ultrastruct Res 90:261–274

    Article  PubMed  Google Scholar 

  • Bretlau P, Jorgensen MB, Hohansen H (1970) Osteogenesis imperfecta. Light and electron microscopic studies of the stapes. Acta Oto-Laryngol 69:172–184

    CAS  Google Scholar 

  • Brown WE, Chow LC (1976) Chemical properties of bone mineral. Ann Rev Mater Sci 6:213–236

    Article  CAS  Google Scholar 

  • Brown WE, Eidelman N, Tomzaic BB (1987) Octocalcium phosphate as a precursor in biomineral formation. Adv Dent Res 1:306–313

    PubMed  CAS  Google Scholar 

  • Burnell JM, Teubner EJ, Miller AG (1980) Normal maturation changes in bone matrix, mineral, and crystal size in the rat. Calcif Tissue Int 31:13–19

    Article  PubMed  CAS  Google Scholar 

  • Caglioti V (1935) Sulla struttura delle ossa. Atti V Congr. Naz. Chimica Pura Applicata, 320–331. Rome, Associazione Italiana di Chimica

    Google Scholar 

  • Carafoli E (1969) Calcium ion transport in mitochondria. Biochem J 116:2–3

    Google Scholar 

  • Carafoli E, Lehninger AL (1971) A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J 122:681–690

    PubMed  CAS  Google Scholar 

  • Carafoli E, Tiozzo R, Pasquali-Ronchetti I, Laschi R (1971) A study of Ca2+ metabolism in kidney mitochondria during acute uranium intoxication. Lab Invest 25:516–527

    PubMed  CAS  Google Scholar 

  • Carlström D (1955) X-ray crystallographic studies on apatites and calcified structures. Acta Radiol Suppl 121:1–59

    PubMed  Google Scholar 

  • Carlström D, Finean JB (1954) X-ray diffraction studies on the ultrastructure of bone. Biochim Biophys Acta 13:183–191

    Article  PubMed  Google Scholar 

  • Cassella JP, Ali SY (1992) Abnormal collagen and mineral formation in osteogenesis imperfecta. Bone Miner 17:123–128

    Article  PubMed  CAS  Google Scholar 

  • Cassella JP, Pereira R, Khillan JS, Prockop DJ, Garrington N, Ali SY (1994) An ultrastructural, microanalytical, and spectroscopic study of bone from a transgenic mouse with a COL1.A1 pro-alpha-1 mutation. Bone 15:611–619

    Article  PubMed  CAS  Google Scholar 

  • Cassella JP, Garrington N, Stamp TCB, Ali SY (1995) An electron probe X-ray microanalytical study of bone mineral in osteogenesis imperfecta. Calcif Tissue Int 56:118–122

    Article  PubMed  CAS  Google Scholar 

  • Clark JH (1931) A study of tendons, bones, and other forms of connective tissue by means of X-ray diffraction patterns. Am J Physiol 98:328–337

    CAS  Google Scholar 

  • Cohen AM, Maxon HR, Goldsmith RE, Schneider HJ, Wiot JF, Loudon RG, Altemeier WA (1997) Metastatic pulmonary calcification in primary hyperparathyroidism. Arch Intern Med 137:520–522

    Article  Google Scholar 

  • Cooke PH (1967) Fine structure of the fibrillar plate in the central head scale of the striped killifish Fundulus majalis. Trans Am Microsc Soc 86:273–279

    Article  Google Scholar 

  • Cuisinier F, Bres EF, Hemmerle J, Voegel J-C, Frank RM (1987) Transmission electron microscopy of lattice planes in human alveolar bone apatite crystals. Calcif Tissue Int 40:332–338

    Article  PubMed  CAS  Google Scholar 

  • Cuisinier FJG, Steuer P, Senger B, Voegel JC, Frank RM (1992) Human amelogenesis I: High resolution electron microscopy study of ribbon-like crystals. Calcif Tissue Int 51:259–268

    Article  PubMed  CAS  Google Scholar 

  • D’Errico JA, MacNeil RL, Strayhorn CL, Piotrowski BT, Somerman MJ (1995) Models for the study of cementogenesis. Connect Tissue Res 33:9–17

    PubMed  CAS  Google Scholar 

  • Daculsi G, Kerebel B (1977) Some ultrastructural aspects of biological apatite dissolution and possible role of dislocations. J Biol Buccale 5:203–218

    PubMed  CAS  Google Scholar 

  • Daculsi G, Kerebel B (1978) High-resolution electron microscope study of human enamel crystallites: size, shape, and growth. J Ultrastruct Res 65:163–172

    Article  PubMed  CAS  Google Scholar 

  • Daculsi G, Kerebel B, Kerebel LM (1979) Mechanisms of acid dissolution of biological and synthetic apatite crystals at the lattice pattern level. Caries Res 13:277–289

    Article  PubMed  CAS  Google Scholar 

  • Daculsi G, Bouler J-M, LeGeros RZ (1997) Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int Rev Cytol 172:129–191

    PubMed  CAS  Google Scholar 

  • Dallemagne MJ, Brasseur H (1942) La diffraction des rayons X par la substance minérale osseuse. Bull Soc Roy Sci Liége 8/9:1–19

    Google Scholar 

  • deJong WF (1926) La substance minérale dans les os. Rec Trav Chim 45:445–448

    Article  CAS  Google Scholar 

  • Delmez JA, Slatopolsky E (1992) Hyperphosphatemia: its consequences and treatment in patients with chronic renal disease. Am J Kidney Dis 19:303–317

    PubMed  CAS  Google Scholar 

  • Demer LL, Tintut Y (2003) Mineral exploration: search for the mechanism of vascular calcification and beyond: the 2003 Jeffrey M. Hoeg Award lecture. Arterioscler Thromb Vasc Biol 23:1739–1743

    Article  PubMed  CAS  Google Scholar 

  • Dennis JE, Xiao S-Q, Agarwal M, Fink DJ, Heuer AH, Caplan AI (1996) Microstructure of matrix and mineral components of eggshells from white leghorn chickens (Gallus gallus). J Morphol 228:287–306

    Article  CAS  Google Scholar 

  • Dickson GR (1982) Ultrastructure of growth cartilage in the proximal femur of the frog, Rana temporaria. J Anat 135:549–564

    PubMed  CAS  Google Scholar 

  • Diekwisch TGH (1998) Subunit compartments of secretory stage enamel matrix. Connect Tissue Res 38:101–111

    PubMed  CAS  Google Scholar 

  • Diekwisch TGH, Berman BJ, Gentner S, Slavkin HC (1995) Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res 279:149–167

    Article  PubMed  CAS  Google Scholar 

  • Eanes ED (1975) Amorphous intermediates in the formation of biological apatites. In: Colloques Internationales C.N.R.S. (ed) Physico-chimie et cristallographie des apatites d’intérêt biologique. Centre National de la Recherche Scientifique, Paris, pp 295–301

    Google Scholar 

  • Eanes ED (1979) Enamel apatite: chemistry, structure and proteins. J Dent Res 58:829–834

    PubMed  CAS  Google Scholar 

  • Eanes ED (1992) Dynamics of calcium phosphate precipitation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 1–17

    Google Scholar 

  • Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 23:259–269

    Article  PubMed  CAS  Google Scholar 

  • Eanes ED, Posner AS (1965) Kinetics and mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite. Trans N Y Acad Sci 28:233–241

    CAS  Google Scholar 

  • Eanes ED, Posner AS (1970) Structure and chemistry of bone mineral. In: Schraer H (ed) Biological calcification: cellular and molecular aspect. Appleton-Century-Crofts, New York, pp 1–26

    Google Scholar 

  • Eanes ED, Gillessen IH, Posner AS (1965) Intermediate states in the precipitation of hydroxyapatite. Nature (London) 208:365–367

    Article  PubMed  CAS  Google Scholar 

  • Eanes ED, Termine JD, Posner AS (1967) Amorphous calcium phosphate in skeletal tissue. Clin Orthop Relat Res 53:223–235

    Article  PubMed  CAS  Google Scholar 

  • Eisenstein R, Zeruolis L (1964) Vitamin-D induced aortic calcification. Arch Path 77:27–35

    PubMed  CAS  Google Scholar 

  • Eisenstein R, Trueheart RE, Hass GM (1960) Pathogenesis of abnormal tissue calcifications. In: Sognnaes RF (ed) Calcification in biological systems. American Association for the Advancement of Sciences, Washington, pp 281–305

    Google Scholar 

  • Elliott JC (1973) The problems of the composition and structure of the mineral components of the hard tissues. Clin Orthop Relat Res 93:313–345

    Article  PubMed  CAS  Google Scholar 

  • Engström A (1960) Ultrastructure of bone mineral. In: Rodahl K, Nicholson JT, Brown EM (eds) Bone as a tissue. McGraw-Hill, New York, pp 251–261

    Google Scholar 

  • Ennever J (1960) Intracellular calcification by oral filamentous microrganisms. J Periodontol 31:304–307

    Google Scholar 

  • Ennever J, Creamer H (1967) Microbiological calcification: bone mineral and bacteria. Calcif Tissue Res 1:87–93

    Article  PubMed  CAS  Google Scholar 

  • Ennever J, Streckfuss JL, Goldschmidt MC (1981) Calcifiability comparison among selected microorganisms. J Dent Res 60:1793–1796

    PubMed  CAS  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Article  Google Scholar 

  • Fassbinder JW, Stanjek H, Vali H (1990) Occurrence of magnetic bacteria in soil. Nature 343:161–163

    Article  PubMed  CAS  Google Scholar 

  • Fearnhead RW (1979) Matrix-mineral relationships in enamel tissues. J Dent Res 58:909–916

    PubMed  CAS  Google Scholar 

  • Fincham AG, Moradian-Oldak J, Simmer JP (1999) The structural biology of the developing dental enamel matrix. J Struct Biol 126:270–299

    Article  PubMed  CAS  Google Scholar 

  • Fisher LW, Eanes ED, Denholm LJ, Heywood BR, Termine JD (1987) Two bovine models of osteogenesis imperfecta exhibit decreased apatite crystal size. Calcif Tissue Int 40:282–285

    Article  PubMed  CAS  Google Scholar 

  • Fitton Jackson S (1957) The fine structure of developing bone in the embryonic fowl. Proc R Soc B 146:270–280

    Google Scholar 

  • Fitton Jackson S, Randall JT (1956) Fibrogenesis and the formation of matrix in developing bone. Ciba Found Symp on Bone Structure and Metabolism, pp 47–62

    Google Scholar 

  • Fitzpatrick LA, Severson A, Edwards WD, Ingram RT (1994) Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J Clin Invest 94:1597–1604

    PubMed  CAS  Google Scholar 

  • Fleisch H, Russell RGG, Bisaz S, Termine JD, Posner AS (1968) Influence of pyrophosphate on the transformation of amorphous to crystalline calcium phosphate. Calcif Tissue Res 2:49–59

    Article  CAS  Google Scholar 

  • Foo CWP, Huang J, Kaplan DL (2004) Lessons from seashells: silica mineralization via protein templating. Trends Biotechnol 22:577–585

    Article  PubMed  CAS  Google Scholar 

  • François P, Herman H (1961) Le composé minéral fondamental des tissus calcifiés. II. Les sels osseux contiennent un phosphate de calcium différent de l’hydroxylapatite. Bull Soc Chim Biol 43:643

    PubMed  Google Scholar 

  • Fratzl P, Paris O, Klaushofer K, Landis WJ (1996) Bone mineralization in an osteogenesis imperfecta mouse model studied by small-angle X-ray scattering. J Clin Invest 97:396–402

    PubMed  CAS  Google Scholar 

  • Frazier PD (1968) Adult human enamel: an electron microscopic study of crystallite size and morphology. J Ultrastruct Res 22:1–11

    Article  PubMed  CAS  Google Scholar 

  • Gabbiani G, Tuchweber B (1970) Studies on the mechanism of calcergy. Clin Orthop Relat Res 69:66–74

    Article  PubMed  CAS  Google Scholar 

  • Garant PR (1970) An electron microscopic study of the crystal-matrix relationship in the teeth of the dogfish Squalus acanthias L. J Ultrastruct Res 30:441–449

    Article  PubMed  CAS  Google Scholar 

  • Gatter RA, McCarty DJ (1967) Pathological tissue calcifications in man. Arch Path 84:346–353

    Google Scholar 

  • Gay CV (1977) The ultrastructure of the extracellular phase of bone as observed in frozen thin sections. Calcif Tissue Res 23:215–223

    Article  PubMed  CAS  Google Scholar 

  • Glimcher MJ (1990) The nature of the mineral component of bone and the mechanism of calcification. In: Avioli LV, Krane SM (eds) Metabolic bone disease and clinically related disorders. W.B. Saunders, Philadelphia, pp 42–68

    Google Scholar 

  • Glimcher MJ, Krane SM (1968) The organization and structure of bone, and the mechanism of calcification. In: Gould BS (ed) Biology of collagen. Academic Press, London, pp 67–251

    Google Scholar 

  • Goldberg M, Septier D (1985) Improved lipid preservation by malachite green-glutaraldehyde fixation in rat incisor predentine and dentine. Arch Oral Biol 30:717–726

    Article  PubMed  CAS  Google Scholar 

  • Gonzales HA, Sognnaes RF (1960) Electron microscopy of dental calculus. Science 131:156–158

    Article  PubMed  CAS  Google Scholar 

  • Gotliv BA, Addadi L, Weiner S (2003) Mollusk shell acidic proteins: in search of individual functions. Chem Biochem 4:522–529

    CAS  Google Scholar 

  • Greenawalt JW, Carafoli E (1966) Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria. J Cell Biol 29:37–61

    Article  PubMed  CAS  Google Scholar 

  • Greenawalt JW, Rossi CS, Lehninger AL (1964) Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria. J Cell Biol 23:21–38

    Article  PubMed  CAS  Google Scholar 

  • Gruner JW, McConnel D, Armstrong WD (1937) The relationship between the crystal structure and chemical composition of enamel and dentine. J Biol Chem 121:771–781

    CAS  Google Scholar 

  • Grynpas MD, Bonar LC, Glimcher MJ (1984) Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcif Tissue Int 36:291–301

    Article  PubMed  CAS  Google Scholar 

  • Hagler HK, Sherwin L, Buja LM (1979) Effect of different methods of tissue preparation on mitochondrial inclusions of ischemic and infarcted canine myocardium. Transmission and analytic electron microscopic study. Lab Invest 40:529–544

    PubMed  CAS  Google Scholar 

  • Hancox NM, Boothroyd B (1965) Electron microscopy of the early stages of osteogenesis. Clin Orthop Relat Res 40:153–161

    Article  PubMed  CAS  Google Scholar 

  • Hargest TE, Gay CV, Schraer H, Wasserman AJ (1985) Vertical distribution of elements in cells and matrix of epiphyseal growth plate cartilage determined by quantitative electron probe analysis. J Histochem Cytochem 33:275–286

    PubMed  CAS  Google Scholar 

  • Harper RA, Posner AS (1966) Measurement of non-crystalline calcium phosphate in bone mineral. Proc Soc Exp Biol Med 122:137–142

    PubMed  CAS  Google Scholar 

  • Hass GM, Trueheart RE, Taylor B, Stumpe M (1958) An experimental histologic study of hypervitaminosis D. Am J Pathol 34:395–431

    PubMed  CAS  Google Scholar 

  • Hayashi Y (1995) High resolution electron microscopy of enamel crystallites demineralized by initial dental caries. Scann Microsc 9:199–206

    CAS  Google Scholar 

  • Heggtveit HA, Herman L, Mishra RK (1964) Cardiac necrosis and calcification in experimental magnesium deficiency. A light and electron microscopic study. Am J Pathol 45:757–782

    PubMed  CAS  Google Scholar 

  • Hendricks SB, Hill WL (1942) The inorganic constituents of bone. Science 96:255

    Article  CAS  PubMed  Google Scholar 

  • Herold RCB (1974) Ultrastructure of odontogenesis in the pike (Esox lucius). Role of dental epithelium and formation of enameloid layer. J Ultrastruct Res 48:435–454

    Article  Google Scholar 

  • Hirashita A, Nakamura Y, Okumura E, Kuwabara Y (1980) Microanalysis of mitochondrial granules. Microanalysis of mitochondrial granules in bone cells incident to experimental tooth movement. Acta Histochem Cytochem 13:343–358

    CAS  Google Scholar 

  • Hirschman A, Sobel AE, Fankuchen I (1953) Calcification X. An X-ray diffraction study of calcification in vitro in relation to composition. J Biol Chem 204:13–18

    PubMed  CAS  Google Scholar 

  • Höhling HJ (1989a) Special aspects of biomineralization of dental tissues. In: Oksche A, Vollrath L (eds) Handbook of microscopic anatomy. Springer, Berlin Heidelberg New York, pp 475–524

    Google Scholar 

  • Höhling HJ (1989b) Do conformities exist between the earliest crystal formations in enamel and those of the collagen-rich hard tissues? In: Fearnhead RW (ed) Tooth enamel V. Florence Publishers, Tsurumi, pp 322–334

    Google Scholar 

  • Höhling HJ, Fearnhead RW, Lotter G (1968) The mineral components in aortic “calcification” studied by X-ray and electron diffraction combined with electron microscopy. German Med Monthly 13:135–138

    Google Scholar 

  • Höhling HJ, Scholz F, Boyde A, Heine HG, Reimer L (1971a) Electron microscopical and laser diffraction studies of the nucleation and growth of crystals in the organic matrix of dentine. Z Zellforsch 117:381–393

    Article  PubMed  Google Scholar 

  • Höhling HJ, Kreilos R, Neubauer G, Boyde A (1971b) Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Z Zellforsch 122:36–52

    Article  PubMed  Google Scholar 

  • Höhling HJ, Barckhaus RH, Krefting E-R, Althoff J, Quint P (1990) Collagen mineralization: aspects of the structural relationship between collagen and the apatitic crystallites. In: Bonucci E, Motta PM (eds) Ultrastructure of skeletal tissues. Kluwer Academic Publishers, Boston, pp 41–62

    Google Scholar 

  • Höhling HJ, Arnold S, Barckhaus RH, Plate U, Wiesmann HP (1995) Structural relationship between the primary crystal formation and the matrix macromolecules in different hard tissues. Discussion of a general principle. Connect Tissue Int 33:171–178

    Google Scholar 

  • Höhling HJ, Arnold S, Plate U, Stratmann U, Wiesmann HP (1997) Analysis of general principle of crystal nucleation, formation in the different hard tissues. Adv Dent Res 11:462–466

    PubMed  Google Scholar 

  • Holmes JR, Baker JR, Davies ET (1964) Osteogenesis imperfecta in lambs. VetRec 76:980–984

    Google Scholar 

  • Houllé P, Voegel JC, Schultz P, Steuer P, Cuisinier FJG (1997) High resolution electron microscopy: structure and growth mechanisms of human dentin crystals. J Dent Res 76:895–904

    PubMed  Google Scholar 

  • Ikoma T, Kobayashi H, Tanaka J, Walsh D, Mann S (2003) Microstructure, mechanical, and biomimetic properties of fish scales from Pagrus major. J Struct Biol 142:327–333

    Article  PubMed  Google Scholar 

  • Inage T (1975) Electron microscopic study of early formation of the tooth enameloid of a fish (Hoplognathus fasciatus). I. Odontoblasts and matrix fibers. Arch Histol Jap 38:209–227

    PubMed  CAS  Google Scholar 

  • Indridason OS, Quarles LD (2002) Hyperphosphatemia in end-stage renal disease. Adv Ren Replace Ther 9:184–192

    Article  PubMed  Google Scholar 

  • Irnell L, Werner I, Grimelius L (1970) Soft tissue calcification in hyperparathyroidism. Acta Med Scand 187:145–151

    Article  PubMed  CAS  Google Scholar 

  • Johnson NW (1966) Differences in the shape of human enamel crystallites after partial destruction by caries, EDTA and various acids. Archs Oral Biol 11:1421–1424

    Article  CAS  Google Scholar 

  • Johnson WC, Alkek DS (1970) Histopathology and histochemistry of cutaneous calciphylaxis. Clin Orthop Relat Res 69:75–86

    Article  PubMed  CAS  Google Scholar 

  • Jones SJ, Boyde A (1984) Ultrastructure of dentin and dentinogenesis. In: Linde A (ed) Dentin and dentinogenesis, vol. I. CRC Press, Boca Raton, pp 81–134

    Google Scholar 

  • Jongebloed WL, Molenaar I, Arends J (1975) Morphology and size-distribution of sound and acid-treated enamel crystallites. Calcif Tissue Res 19:109–123

    Article  PubMed  CAS  Google Scholar 

  • Kajander EO, Çiftçioglu N (1998) Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95:8274–8279

    Article  PubMed  CAS  Google Scholar 

  • Kakei M, Nakahara H, Tamura N, Itoh H, Kumegawa M (1997) Behavior of carbonate and magnesium ions in the initial crystallites at the early developmental stages of the rat calvaria. Ann Anat 179:311–316

    PubMed  CAS  Google Scholar 

  • Kakei M, Nakahara H, Kumegawa M, Yoshikawa M, Kunii S (2000) Demonstration of the central dark line in crystals of dental calculus. Biochim Biophys Acta 1524:189–195

    PubMed  CAS  Google Scholar 

  • Kakei M, Nakahara H, Kumegawa M, Mishima H, Kozawa Y (2001) High-resolution electron microscopy of the crystallites of fossil enamels obtained from various geological ages. J Dent Res 80:1560–1564

    PubMed  CAS  Google Scholar 

  • Keen CE, Crocker PR, Brady K, Hasan N, Levison DA (1991) Calcium pyrophosphate dehydrate deposition disease: morphological and microanalytical features. Histopathology 19:529–536

    PubMed  CAS  Google Scholar 

  • Kelly PG, Oliver PTP, Pautard FGE (1965) The shell of Lingula unguis. In: Richelle LJ, Dallemagne MJ (eds) Calcified tissues. Université de Liège, Liège, pp 337–345

    Google Scholar 

  • Kemp NE, Park JH (1974) Ultrastructure of the enamel layer in developing teeth of the shark Carcharhinus menisorrah. Arch Oral Biol 19:633–644

    Article  PubMed  CAS  Google Scholar 

  • Kent SP, Vawter GF, Dowben RM, Benson RE (1958) Hypervitaminosis D in monkeys; a clinical and pathologic study. Am J Pathol 34:37–59

    PubMed  CAS  Google Scholar 

  • Kerebel L-M, Le Cabellec MT (1980) Enameloid in the teleost fish Lophius. An ultrastructural study. Cell Tissue Res 206:211–223

    Article  PubMed  CAS  Google Scholar 

  • Kerebel B, Daculsi G, Verbaere A (1976a) High-resolution electron microscopy and crystallographic study of some biological apatite. J Ultrastruct Res 57:266–275

    Article  PubMed  CAS  Google Scholar 

  • Kerebel B, Daculsi G, Verbaere A (1976b) Ultrastructural and crystallographic study of biological apatites. J Ultrastruct Res 57:263–275

    Article  Google Scholar 

  • Kerebel B, Daculsi G, Kerebel LM (1978) Apports de la méthode d’amincissement ionique à l’étude en haute résolution des cristaux d’émail dentaire humain. C R Acad Sci Paris 286:1903–1906

    CAS  Google Scholar 

  • Kerebel B, Daculsi G, Kerebel LM (1979) Ultrastructural studies of enamel crystallites. J Dent Res 58:844–850

    PubMed  CAS  Google Scholar 

  • Kleinman HK, Pennypacker JP, Brown KS (1977) Proteoglycan and collagen of “achondroplastic” (cn/cn) neonatal mouse cartilage. Growth 41:171–177

    PubMed  CAS  Google Scholar 

  • Knowles JC, Weavers B, Cooper EH (1972) Accumulation of calcium in the intramitochondrial dense bodies in mice. Exp Cell Res 73:230–233

    Article  PubMed  CAS  Google Scholar 

  • Krinsley D (1960) Trace elements in the tests of planktonic Foraminifera. Micropaleontology 6:297–300

    Article  CAS  Google Scholar 

  • Landis WJ, Géraudie J (1990) Organization and development of the mineral phase during early ontogenesis of the bony fin rays of the trout Oncorhynchus mykiss. Anat Rec 228:383–391

    Article  PubMed  CAS  Google Scholar 

  • Landis WJ, Glimcher MJ (1978) Electron diffraction and electron probe microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223

    Article  PubMed  CAS  Google Scholar 

  • Landis WJ, Burke GY, Neuringer JR, Paine MC, Nanci A, Bai P, Warshawsky H (1988) Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis. Anat Rec 220:233–238

    Article  PubMed  CAS  Google Scholar 

  • Leadbeater BSC, Riding R(1986) Biomineralization in lower plants and animals. Systematics association, vol 30. Oxford University Press, Oxford

    Google Scholar 

  • Lee DD, LeGeros RZ (1985) Microbeam electron diffraction and lattice fringe studies of defect structures in enamel apatites. Calcif Tissue Int 37:651–658

    Article  PubMed  CAS  Google Scholar 

  • Lefèvre ML, Bale WF, Hodge H (1937) The chemical nature of the inorganic portion of fetal tooth substance. J Dent Res 16:85–101

    Google Scholar 

  • Lehninger AL (1970) Mitochondria and calcium ion transport. Biochem J 119:129–138

    PubMed  CAS  Google Scholar 

  • Lénárt G, Bidló G, Pintér J (1968) Use of X-ray diffraction method in investigations of mineral substances of bone and callus. Acta Biochim Biophys Acad Sci Hung 3:305–316

    Google Scholar 

  • Lénárt G, Bidló G, Pintér J (1971) X-ray diffraction investigation on the growing zone of long bones. Acta Biochim Biophys Acad Sci Hung 6:307–309

    PubMed  Google Scholar 

  • Lénárt G, Pflüger G, Bidló G, Pintér J, Fischerleitner F (1979) Kristallographische Untersuchung der Verlängerungskallus. Arch Orthop Traumat Surg 93:303–305

    Article  Google Scholar 

  • Levrat-Calviac V (1986) Etude comparée des ostéodermes de Tarentola mauritanica et de T. neglecta (Gekkonidae, Squamata). Arch Anat Microsc Morphol Exp 75:29–43

    Google Scholar 

  • Levrat-Calviac V, Zylberberg L (1986) The structure of the osteoderms in the gekko: Tarentola mauritanica. Am J Anat 176:437–446

    Article  PubMed  CAS  Google Scholar 

  • Lie T, Selvig KA (1974) Calcification of oral bacteria: an ultrastructural study of two strains of Bacterionema matruchotii. Scand J Dent Res 82:8–18

    PubMed  CAS  Google Scholar 

  • Little JJ (1959) Electron microscope studies in human dental enamel. J Microsc Soc 78:58–66

    Google Scholar 

  • Lo Storto S, Di Grezia R, Silvestrini G, Cattabriga M, Bonucci E (1990) Studio morfologico ultrastrutturale di tartaro sopragengivale. Minerva Stomatol 39:83–89

    PubMed  Google Scholar 

  • Lopez E (1970) L’os cellulaire d’un poisson téléostéen “Anguilla anguilla L.” I. Étude histocytologique et histophysique. Z Zellforsch 109:552–565

    Article  PubMed  CAS  Google Scholar 

  • Lowenstam HA (1981) Minerals formed by organisms. Science 211:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Mabie CP, Wallace BM (1974) Optical, physical and chemical properties of pineal gland calcification. Calcif Tiss Res 16:59–71

    Article  CAS  Google Scholar 

  • Mann S (1988) Molecular recognition in biomineralization. Nature 332:119–124

    Article  CAS  Google Scholar 

  • Mann S (2001) Biomineralization. Principles and concepts in bioinorganic materials chemistry. Oxford University Press, Oxford

    Google Scholar 

  • Marshall AF, Lawless KR (1981) TEM studies of the central dark line in enamel crystallites. J Dent Res 60:1773–1782

    PubMed  CAS  Google Scholar 

  • Martin J-C, Le Bouffant L, Durif S, Henoc P, Normand C, Policard A (1971) Identification cristallographique et ultrastructure des calcification pulmonaires pathologiques. Path Biol 19:735–742

    CAS  Google Scholar 

  • Matsunaga T, Okamura Y (2003) Genes and proteins involved in bacterial magnetic particle formation. Trends Microbiol 11:536–541

    Article  PubMed  CAS  Google Scholar 

  • McConnell D (1952) The crystal chemistry of carbonate apatites and their relationship to the composition of calcified tissues. J Dent Res 31:53–63

    PubMed  CAS  Google Scholar 

  • McKusick VA (1960) Eritable disorders of connective tissues. The C.V. Mosby Company, St. Louis

    Google Scholar 

  • Meinke DK, Skinner HCW, Thomson KS (1979) X-ray diffraction of the calcified tissues in Polypterus. Calcif Tissue Int 28:37–42

    Article  PubMed  CAS  Google Scholar 

  • Mellors RC (1964) Electron probe microanalysis I. Calcium and phosphorus in normal human cortical bone. Lab Invest 13:183–195

    PubMed  CAS  Google Scholar 

  • Meunier FJ, François Y (1980) L’organisation spatiale des fibres collagènes et la minéralization des écailles des Dipneustes actuels. Bull Soc Zool Fr 105:215–226

    Google Scholar 

  • Miake Y, Aoba T, Moreno EC, Shimoda S, Prostak K, Suga S (1991) Ultrastructural studies on crystal growth of enameloid minerals in Elasmobranch and Teleost fish. Calcif Tissue Int 48:204–217

    Google Scholar 

  • Miake Y, Shimoda S, Fukae M, Aoba T (1993) Epitaxial overgrowth of apatite crystals on the thin-ribbon precursor at early stages of porcine enamel mineralization. Calcif Tissue Int 53:249–256

    Article  PubMed  CAS  Google Scholar 

  • Molnar Z (1959) Development of the parietal bone of young mice 1. Crystals of bone mineral in frozen-dried preparations. J Ultrastruct Res 3:39–45

    Article  PubMed  CAS  Google Scholar 

  • Münzenberg KJ, Gebhardt M (1973) Brushite octacalcium phosphate, and carbonate-containing apatite in bone. Clin Orthop Relat Res 90:271–273

    Google Scholar 

  • Nanci A, Smith CE (1992) Development and calcification of enamel. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 313–343

    Google Scholar 

  • Neuman WF, Neuman MW (1953) The nature of the mineral phase of bone. Chem Rev 53:1–45

    Article  CAS  Google Scholar 

  • Neuman WF, Neuman MW (1958) The chemical dynamics of bone mineral. University of Chicago Press, Chicago

    Google Scholar 

  • Nicholls DG, Crompton M (1980) Mitochondrial calcium transport. FEBS Lett 111:261–268

    Article  PubMed  CAS  Google Scholar 

  • Nylen MU (1964) Electron microscope and allied biophysical approaches to the study of enamel remineralization. J Microsc 83:135–141

    CAS  Google Scholar 

  • Nylen MU, Omnell K-Å (1962) The relationship between the apatite crystals and the organic matrix of rat enamel. QQ-4. New York, Fifth International Congress for Electron Microscopy, Academic Press

    Google Scholar 

  • Nylen MU, Eanes ED, Omnell K-Å (1963) Crystal growth in rat enamel. J Cell Biol 18:109–123

    Article  PubMed  CAS  Google Scholar 

  • Ostrowski K, Dziedzic-Goclawska A, Sliwowski A, Wojtczak L, Michalik J, Stachowicz W (1975) Analysis of the crystallinity of calcium phosphate deposits in rat liver mitochondria by electron spin resonance spectroscopy. FEBS Lett 60:410–413

    Article  PubMed  CAS  Google Scholar 

  • Palladini G, Carbone A (1966) Ultrastruttura della calcificazione distrofica renale da sublimato. Experientia 22:585

    Article  Google Scholar 

  • Pasquali-Ronchetti I, Greenawalt JW, Carafoli E (1969) On the nature of the dense matrix granules of normal mitochondria. J Cell Biol 40:565–568

    Article  PubMed  CAS  Google Scholar 

  • Patriarca P, Carafoli E (1968) A study of the intracellular transport of calcium in rat heart. J Cell Physiol 72:29–38

    Article  PubMed  CAS  Google Scholar 

  • Pautard FGE (1965) Calcification of baleen. In: Richelle LJ, Dallemagne MJ (eds) Calcified tissues. Université de Liège, Liège, pp 347–357

    Google Scholar 

  • Pautard FGE (1970) Calcification in unicellular organisms. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 105–201

    Google Scholar 

  • Pautard FGE (1976) Calcification in single cells: with an appraisal of the relationship between Spirostomum ambiguum and the osteocyte. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, SC, pp 33–53

    Google Scholar 

  • Peachey LD (1964) Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules. J Cell Biol 20:95–109

    Article  PubMed  CAS  Google Scholar 

  • Perry CC(2003) Silification: the processes by which organisms capture and mineralize silica. Rev Miner Geochem 54:297–327

    Google Scholar 

  • Plate U, Höhling HJ, Reimer L, Barckhaus RH, Wienecke R, Wiesmann H-P, Boyde A (1992) Analysis of the calcium distribution in predentine by EELS and of the early crystal formation in dentine by ESI and ESD. J Microsc 166:329–341

    PubMed  CAS  Google Scholar 

  • Politi Y, Arad T, Klein E, Weiner S, Addadi L (2004) Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306:1161–1164

    Article  PubMed  CAS  Google Scholar 

  • Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    PubMed  CAS  Google Scholar 

  • Posner AS (1987) Bone mineral and the mineralization process. In: Peck WA (ed) Bone and mineral research 5. Elsevier Science Publisher, Amsterdam, pp 65–116

    Google Scholar 

  • Posner AS, Betts F (1975) Synthetic amorphous calcium phosphate and its relation to bone mineral structure. Acc Chem Res 8:273–281

    Article  CAS  Google Scholar 

  • Posner AS, Harper RA, Muller SA, Menczel J (1965) Age changes in the crystal chemistry of bone apatite. Ann N Y Acad Sci 131:737–742

    Article  PubMed  CAS  Google Scholar 

  • Posner AS, Blumenthal NC, Boskey AL, Betts F (1975) Synthetic analogue of bone mineral formation. J Dent Res 54:B88–B93

    PubMed  Google Scholar 

  • Posner AS, Betts F, Blumenthal NC (1978) Properties of nucleating systems. Metab Bone Dis Rel Res 1:179–183

    Article  CAS  Google Scholar 

  • Posner AS, Tannenbaum PJ (2000) The mineral phase of dentin. In: Linde A (ed) Dentin and dentinogenesis. CRC Press, Boca Raton, pp 17–36

    Google Scholar 

  • Ramachandran C, Bygrave FL (1978) Calcium ion cycling in rat liver mitochondria. Biochem J 174:613–620

    PubMed  CAS  Google Scholar 

  • Reif W, Lange HP (1972) Vergleichende morphologische und chemische Untersuchungen zur dystrophischen Verkalkung und mineralisation der Kaninchenniere beim Infarkt und während der Regeneration der postischämischen Nephrose. Beitr Path 145:221–248

    CAS  Google Scholar 

  • Rey C, Beshah K, Griffin R, Glimcher MJ (1991) Structural studies of the mineral phase of calcifying cartilage. J Bone Miner Res 6:515–525

    Article  PubMed  CAS  Google Scholar 

  • Reynafarje B, Lehninger AL (1969) High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem 244:584–593

    PubMed  CAS  Google Scholar 

  • Rimoin DL (1996) Molecular defects in the chondrodysplasias. Am J Med Genet 63:106–110

    Article  PubMed  CAS  Google Scholar 

  • Robinson C, Shore RC, Wood SR, Brookes SJ, Smith DA, Wright JT, Connell S, Kirkham J (2003) Subunit structures in hydroxyapatite crystal development in enamel: implications for amelogenesis imperfecta. Connect Tissue Res 44:65–71

    PubMed  CAS  Google Scholar 

  • Rönnholm E (1962) The amelogenesis of human teeth as revealed by electron microscopy II. The development of enamel crystallites. J Ultrastruct Res 6:249–303

    Article  PubMed  Google Scholar 

  • Rogers KD, Daniels P (2002) An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials 23:2577–2585

    Article  PubMed  CAS  Google Scholar 

  • Roseberry HH, Hastings AB, Morse JK (1931) X-ray analysis of bone and teeth. J Biol Chem 90:335–407

    Google Scholar 

  • Saetersdal TS, Myklebust R, Berg Justesen N-P, Engedal H, Olsen WC (1977) Calcium containing particles in mitochondria of heart muscle cells as shown by cryo-ultramicrotomy and X-ray microanalysis. Cell Tissue Res 182:17–31

    Article  PubMed  CAS  Google Scholar 

  • Sakae T (1988) X-ray diffraction and thermal studies of crystals from the outer and inner layers of human dental enamel. Arch Oral Biol 33:707–713

    Article  PubMed  CAS  Google Scholar 

  • Saladino AJ, Bentley PJ, Trump BF (1969) Ion movements in cell injury. Effect of amphotericin B on the ultrastructure and function of the epithelial cells of the toad bladder. Am J Pathol 54:421–466

    PubMed  CAS  Google Scholar 

  • Sarathchandra P, Kayser MV, Ali SY (1999) Abnormal mineral composition of osteogenesis imperfecta bone as determined by electron probe X-ray microanalysis on conventional and cryosections. Calcif Tissue Int 65:11–15

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa I (2002) Mineralization patterns in elasmobranch fish. Microsc Res Tech 59:396–407

    Article  PubMed  CAS  Google Scholar 

  • Sasagawa I, Ishiyama M (1988) The structure and development of the collar enameloid in two teleost fishes, Halichoeres poecilopterus and Pagrus major. Anat Embryol (Berl) 178:499–511

    Article  PubMed  CAS  Google Scholar 

  • Sayegh FS, Abousy A (1977) Mitochondrial granule distribution in tooth germ cells. Anat Record 189:451–466

    Article  CAS  Google Scholar 

  • Sayegh FS, Davis RW, Solomon GC (1974) Mitochondrial role in cellular mineralization. J Dent Res 53:581–587

    CAS  Google Scholar 

  • Schüler D, Baeuerlein E (1998) Dynamics of iron uptake and Fe3O4 biomineralization during aerobic and microaerobic growth of Magnetospirillum gryphiswaldense. J Bacteriol 180:159–162

    PubMed  Google Scholar 

  • Schüler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    Article  PubMed  Google Scholar 

  • Seifert G, Dreesbach HA (1966) Die calciphylaktische Artheriopatie. Frankf Z Path 75:342–361

    CAS  Google Scholar 

  • Selvig KA (1970) Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calcif Tissue Res 6:227–238

    Article  PubMed  CAS  Google Scholar 

  • Selvig KA (1973) Electron microscopy of dental enamel: analysis of crystal lattice images. Z Zellforsch 137:271–280

    Article  PubMed  CAS  Google Scholar 

  • Selvig KA (1975) Resolution of the hydroxyapatite crystal lattice in bone and dental enamel by electron microscopy. In: Colloques Internationaux C.N.R.S. (ed) Physico-chemie et cristallographie des apatites d’intérêt biologique. Centre National de la Recherche Scientifique, Paris, pp 41–49

    Google Scholar 

  • Selwyn MJ, Dawson AP, Dunnett SJ (1970) Calcium transport in mitochondria. FEBS Lett 10:1–5

    Article  PubMed  CAS  Google Scholar 

  • Shapiro IM, Lee NH (1975a) Calcium accumulation by chondrocyte mitochondria. Clin Orthop Relat Res 106:323–329

    Article  PubMed  Google Scholar 

  • Shapiro IM, Lee NH (1975b) Effects of Ca2+ on the respiratory activity of chondrocyte mitochondria. Arch Biochem Biophys 170:627–633

    Article  PubMed  CAS  Google Scholar 

  • Shellis RP, Miles AEW (1976) Observations with the electron microscope on enameloid formation in the common eel (Anguilla anguilla: Teleostei). Proc R Soc London B 194:253–269

    Article  Google Scholar 

  • Shioi A, Mori K, Jono S, Wakikawa T, Hiura Y, Koyama H, Okuno Y, Nishizawa Y, Morii H (2000) Mechanism of atherosclerotic calcification. Z Kardiol 89:75–79

    Article  PubMed  CAS  Google Scholar 

  • Silberberg R, Lesker P (1975) Skeletal growth and development of achondroplastic mice. Growth 39:17–33

    PubMed  CAS  Google Scholar 

  • Sillence DO, Horton WA, Rimoin DL (1979) Morphologic studies in the skeletal dysplasias. A review. Am J Pathol 96:811–870

    Google Scholar 

  • Simmelink JW, Abrigo SC (1989) Crystal morphology and decalcification patterns compared in rat and human enamel and synthetic hydroxyapatite. Adv Dent Res 3:241–248

    PubMed  CAS  Google Scholar 

  • Simmer JP, Fincham AG (1995) Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med 6:84–108

    PubMed  CAS  Google Scholar 

  • Slatopolsky E, Brown A, Dusso A (2001) Role of phosphorus in the pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis 37:S54–S57

    PubMed  CAS  Google Scholar 

  • Smith CB, Smith DA (1976) An X-ray diffraction investigation of age-related changes in the crystal structure of bone apatite. Calcif Tissue Res 22:219–226

    Article  PubMed  CAS  Google Scholar 

  • Söllner C, Burghammer M, Busch-Nentwich E, Berger J, Schwarz H, Riekel C, Nicolson T (2003) Control of crystal size and lattice formation by starmaker in otolith biomineralization. Science 302:282–286

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV, Devine CE, Peters PD, Hall TA (1974) Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol 61:723–742

    Article  PubMed  CAS  Google Scholar 

  • Southard JH, Green DE (1974) High affinity binding of Ca++ in mitochondria: a reappraisal. Biochem Biophys Res Comm 59:30–37

    Article  PubMed  CAS  Google Scholar 

  • Steinmann B, Nicholls A, Pope FM (1986) Clinical variability of osteogenesis imperfecta reflecting molecular heterogeneity: cysteine substitutions in the α1(I) collagen chain producing lethal and mild forms. J Biol Chem 261:8958–8964

    PubMed  CAS  Google Scholar 

  • Steve-Bocciarelli D (1973) Apatite microcrystals in bone and dentine. J Microsc (Paris) 16:21–34

    CAS  Google Scholar 

  • Stuehler R (1937) Über den Feinbau des Knochens. Fortschr Röntgenstr 57:231–264

    Google Scholar 

  • Suga S, Taki Y, Ogawa M (1992) Iron in enameloid of perciform fish. J Dent Res 71:1316–1325

    PubMed  CAS  Google Scholar 

  • Suga S, Taki Y, Ogawa M (1993) Fluoride and iron concentrations in the enameloid of lower teleostean fish. J Dent Res 72:912–922

    PubMed  CAS  Google Scholar 

  • Sumerel JL, Morse DE (2003) Biotechnological advances in biosilification. Progr Mol Subcell Biol 33:225–247

    Google Scholar 

  • Sutfin LV, Holtrop ME, Ogilvie RE (1971) Microanalysis of individual mitochondrial granules with diameters less than 1000 Angstrom. Science 174:947–949

    Article  PubMed  CAS  Google Scholar 

  • Takano Y, Yamamoto T, Domon T, Wakita M (1990) Histochemical, ultrastructural, and electron microprobe analytical studies on the localization of calcium in rat incisor ameloblasts at early stage amelogenesis. Anat Record 228:123–131

    Article  CAS  Google Scholar 

  • Takano Y, Hanaizumi Y, Ohshima H (1996) Occurrence of amorphous and crystalline mineral deposits at the epithelial-mesenchymal interface of incisors in the calcium-loaded rat: implication of novel calcium binding domains. Anat Record 245:174–185

    Article  CAS  Google Scholar 

  • Takazoe I, Itoyama T (1980) Analytical electron microscopy of Bachterionema matruchotii calcification. J Dent Res 59:1090–1094

    PubMed  CAS  Google Scholar 

  • Takuma S, Tohda H, Tanaka N, Kobayashi T (1987) Lattice defects in and carious dissolution of human enamel crystals. J Electron Microsc 36:387–391

    CAS  Google Scholar 

  • Termine JD, Eanes ED (1972) Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res 10:171–197

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Posner AS (1967) Amorphous/crystalline interrelationships in bone mineral. Calcif Tissue Res 1:8–23

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Peckauskas RA, Posner AS (1970) Calcium phosphate formation in vitro II. Effects of environment on amorphous-crystalline transformation. Arch Biochem Biophys 140:318–325

    Article  PubMed  CAS  Google Scholar 

  • Termine JD, Eanes ED, Greenfield DJ, Nylen MU (1973) Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calcif Tissue Res 12:73–90

    Article  PubMed  CAS  Google Scholar 

  • Thomas RS, Greenawalt JW (1968) Microincineration, electron microscopy, and electron diffraction of calcium-phosphate-loaded mitochondria. J Cell Biol 39:55–76

    Article  PubMed  CAS  Google Scholar 

  • Tintut Y, Demer LL (2001) Recent advances in multifactorial regulation of vascular calcification. Curr Opin Lipidol 12:555–560

    Article  PubMed  CAS  Google Scholar 

  • Todd R, Blackmon P (1956) Calcite and aragonite in Foraminifera. J Paleontol 30:270–290

    Google Scholar 

  • Tohda H, Takuma S, Tanaka N (1987) Intracrystalline structure of enamel crystals affected by caries. J Dent Res 66:1647–1653

    PubMed  CAS  Google Scholar 

  • Tomazic BB (2001) Physiochemical principles of cardiovascular calcification. Z Kardiol 90:68–80

    Article  PubMed  Google Scholar 

  • Tomson C (2003) Vascular calcification in chronic renal failure. Nephron Clin Pract 93:c124–130

    Article  PubMed  CAS  Google Scholar 

  • Towe KM, Cifelli R (1967) Wall ultrastructure in the calcareous foraminifera: crystallographic aspects and a model for calcification. J Paleontol 41:742–762

    Google Scholar 

  • Trautz OR (1955) X-ray diffraction of biological and synthetic apatites. Ann N Y Acad Sci 60:698–713

    Article  Google Scholar 

  • Travis DF (1963) Structural features of mineralization from tissue to macromolecular levels of organization in the decapod crustacea. Ann N Y Acad Sci 109:117–245

    Article  Google Scholar 

  • Travis DF (1968) The structure and organization of, and the relationship between, the inorganic crystals and the organic matrix of the prismatic region of Mytilus edulis. J Ultrastruct Res 23:183–215

    Article  CAS  Google Scholar 

  • Travis DF (1970) The comparative ultrastructure and organization of five calcified tissues. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 203–311

    Google Scholar 

  • Urist MR, Dowell TA (1967) The newly deposited mineral in cartilage and bone matrix. Clin Orthop Relat Res 50:291–308

    Article  PubMed  CAS  Google Scholar 

  • Voegel JC, Frank RM (1977) Stages in the dissolution of human enamel crystals in dental caries. Calcif Tissue Res 24:19–27

    Article  PubMed  CAS  Google Scholar 

  • Wallgren W (1957) Biophysical analyses of the formation and structure of human fetal bone. Acta Paed Suppl. 113

    Google Scholar 

  • Weinbach EC, von Brand T (1965) The isolation and composition of dense granules from Ca++-loaded mitochondria. Biochem Biophys Res Comm 19:133–136

    Article  CAS  Google Scholar 

  • Weiner S, Addadi L (2002) At the cutting edge. Science 298:375–376

    Article  PubMed  CAS  Google Scholar 

  • Weiner S, Levi-Kalisman Y, Raz S, Addadi L (2003) Biologically formed amorphous calcium carbonate. Connect Tissue Res 44:214–218

    PubMed  CAS  Google Scholar 

  • Weiner S, Sagi I, Addadi L (2005) Choosing the crystallization path less traveled. Science 309:1027–1028

    Article  PubMed  CAS  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491

    Article  PubMed  CAS  Google Scholar 

  • Wergedal JE, Baylink DJ (1974) Electron microprobe measurements of bone mineralization rate in vivo. Am J Physiol 226:345–352

    PubMed  CAS  Google Scholar 

  • Wheeler AP (1992) Mechanisms of molluscan shell formation. In: Bonucci E (ed) Calcification in biological systems. CRC Press, Boca Raton, pp 179–216

    Google Scholar 

  • Wheeler EJ, Lewis D (1977) An X-ray study of the paracrystalline nature of bone apatite. Calcif Tissue Res 24:243–248

    Article  PubMed  CAS  Google Scholar 

  • Wilmer WA, Magro CM (2002) Calciphylaxis: emerging concepts in prevention, diagnosis, and treatment. Semin Dial 15:172–186

    Article  PubMed  Google Scholar 

  • Wilt FH (1999) Matrix and mineral in the sea urchin larval skeleton. J Struct Biol 126: 216–226

    Article  PubMed  CAS  Google Scholar 

  • Wilt FH, Killian CE, Livingston BT (2003) Development of calcareous skeletal elements in invertebrates. Differentiation 71:237–250

    Article  PubMed  CAS  Google Scholar 

  • Woodard HQ (1962) The elementary composition of human cortical bone. Health Phys 8:513–517

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse MA, Burston J (1969) Metastatic calcification of the myocardium. J Path 97:733–736

    Article  PubMed  CAS  Google Scholar 

  • Wright JT, Duggal MS, Robinson C, Kirkham J, Shore R (1993) The mineral composition and enamel ultrastructure of hypocalcified amelogenesis imperfecta. J Craniofac Genet Dev Biol 13:117–126

    PubMed  CAS  Google Scholar 

  • Wu Y, Ackerman JL, Kim H-M, Rey C, Barroug A, Glimcher MJ (2002) Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites. J Bone Miner Res 17:472–480

    Article  PubMed  CAS  Google Scholar 

  • Wuthier RE, Eanes ED (1975) Effect of phospholipids on the transformation of amorphous calcium phosphate to hydroxyapatite in vitro. Calcif Tissue Res 19:197–210

    Article  PubMed  CAS  Google Scholar 

  • Wuthier RE, Bisaz S, Russell RGG, Fleisch H (1972) Relationship between pyrophosphate, amorphous calcium phosphate, and other factors in the sequence of calcification in vivo. Calcif Tissue Res 10:198–206

    Article  PubMed  CAS  Google Scholar 

  • Young RA (1974) Implications of atomic substitution and other structural details in apatites. J Dent Res 53:193–203

    PubMed  CAS  Google Scholar 

  • Young JR, Davis SA, Bown PR, Mann S (1999) Coccolith ultrastructure and biomineralisation. J Struct Biol 126:195–215

    Article  PubMed  CAS  Google Scholar 

  • Zander HA, Hazen SP, Scott DB (1960) Mineralization of dental calculus. Proc Soc Exper Biol (NY) 103:257–260

    CAS  Google Scholar 

  • Zipkin I (1970) The inorganic composition of bones and teeth. In: Schraer H (ed) Biological calcification: cellular and molecular aspects. Appleton-Century-Crofts, New York, pp 69–103

    Google Scholar 

  • Zylberberg L, Nicolas G (1982) Ultrastructure of scales in a teleost (Carassius auratus L.) after use of rapid freez-fixation and freeze-substitution. Cell Tissue Res 223:349–367

    Article  PubMed  CAS  Google Scholar 

  • Zylberberg L, Géraudie J, Meunier F, Sire J-Y (1992) Biomineralization in the integumental skeleton of the living lower vertebrates. In: Hall BK (ed) Bone, volume 4: Bone metabolism and mineralization. CRC Press, Boca Raton, pp 171–224

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). The Nature and Composition of the Inorganic Phase. In: Biological Calcification. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36013-1_4

Download citation

Publish with us

Policies and ethics