Skip to main content
  • 1462 Accesses

Abstract

As discussed in Sect. 2 and illustrated in Fig. 10.1, mixers convert the high RF frequency to a low IF frequency in receivers and vice versa in transmitters. The corresponding circuits are referred to as down- and up-mixers, respectively. An LO signal provided by a VCO is required for this operation. For capacity reasons and to allow coexistence with other standards, the data has to be transmitted by means of a high RF carrier frequency, whereas in the receiver, low IF frequencies are required for simple baseband processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Bächtold, Mikrowellen-Technik, Vieweg Verlag, Braunschweig, 1999.

    Google Scholar 

  2. M. R. Barber, “Noise figure and conversion loss of the Schottky barrier mixer diode”, IEEE Transactions on Microwave Theory and Techniques, MTT-15, No. 11, pp. 629–635, Nov. 1967.

    Article  Google Scholar 

  3. F. Beffa, A Low-power CMOS Bluetooth Transceiver, Diss. ETH No. 15303, 2002.

    Google Scholar 

  4. G. Begemann, A. Jacob, “Conversion gain of MESFET drain mixers”, Electronic Letters, pp. 567–568, Aug. 1979.

    Google Scholar 

  5. I. N. Bronstein, K. A. Semedjajew, Taschenbuch der Mathematik, Teubner Verlag Stuttgart, 1991.

    Google Scholar 

  6. P. Bura, and R. Dikshit, “FET mixers for communication satellite transponders”, IEEE Microwave Symposium, pp. 90–92, June 1976.

    Google Scholar 

  7. R. Circa, d. Pienkowski, G. Böck, R. Kakerow, M. Müller, R. Wittmann, “Resistive mixers for reconfigurable wireless front-ends”, IEEE Radio Frequency Integrated Circuit Symposium, pp. 513–516, June 2005.

    Google Scholar 

  8. A. H. Darsinooieh and O. Palamutcuoglu, “On the theory and design of subharmonically drain pumped microwave MESFET distributed mixers”, IEEE Mediterranean Electrotechnical Conference, Vol. 1, pp. 595–598, May 1996.

    Google Scholar 

  9. F. Ellinger, “26.5–30 GHz resistive mixer on 90 nm VLSI SOI CMOS technology with high linearity for WLAN”, IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 8, pp. 2559–2565, Aug. 2005.

    Article  Google Scholar 

  10. F. Ellinger, “26–34 GHz CMOS mixer”, IEE Electronics Letters, Vol. 40, No. 22, pp. 1417–1418, Oct. 2004.

    Article  Google Scholar 

  11. F. Ellinger, L. C. Rodoni, G. Sialm, C. Kromer, G. von Büren, M. Schmatz, C. Menolfi, T. Toifl, T. Morf, M. Kossel, H. Jäckel, “30–40 GHz drain pumped passive down mixer MMIC fabricated on digital SOI CMOS technology”, IEEE Transactions on Microwave Theory and Technique, Vol. 52, No. 5, pp. 1382–1391, May 2004.

    Article  Google Scholar 

  12. F. Ellinger, R. Vogt and W. Bächtold, “Compact, resistive monolithic integrated mixer with low distortion for HIPERLAN”, IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 1, pp. 178–182, Jan. 2002.

    Article  Google Scholar 

  13. F. Ellinger, R. Vogt, W. Bächtold, “Ultra low power, low noise GaAs up-converter MMIC for a broadband superheterodyne L-band receiver”, IEEE GaAs Integrated Circuit Symposium, Seattle, pp. 103–106, Nov. 2000.

    Google Scholar 

  14. B. Gilbert, “A high performance monolithic multiplier using active feedback”, IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, Dec. 1974.

    Google Scholar 

  15. X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end”, IEEE Journal of Solid-State Circuits, Vol. 39, No. 2, pp. 155–158, Feb. 2004.

    Article  Google Scholar 

  16. P. Heydari, “High-frequency noise in RF active CMOS mixers”, IEEE Design Automation Conference, pp. 57–61, Jan 2004.

    Google Scholar 

  17. C. D. Hull and R. G. Meyer, “A systematic approach to the analysis of Noise in Mixers”, IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 12, pp. 909–919, Sept. 1993.

    Google Scholar 

  18. T. K. Johanse, J. Vidkjaer, V. Krozer, “Analysis and design of wideband SiGe HBT active mixers”, IEEE Transcations on Microwave Theory and Techniques, Vol. 53, No. 7, pp. 2389–2397, July 2005.

    Article  Google Scholar 

  19. J. J. Kucera and U. Lott, “A zero DC-power low-distortion mixer for wireless applications”, IEEE Microwave and Guided Wave Letters, Vol. 9, No. 4, April 1999.

    Google Scholar 

  20. Y. Kwon, D. Pavlidis, P. Marsh, G.-I. Ng, T. L. Brock, “Experimetal characteristics and performance analysis of monolithic InP-based HEMT mixers at W-band”, IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 1, pp. 1–8, Jan. 1993.

    Article  Google Scholar 

  21. T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits”, Cambridge, 2004.

    Google Scholar 

  22. E. W. Lin and W. H. Ku, “Device considerations and modeling for the design of an InP-based MODFET millimeter-wave resistive mixer with superior conversion efficiency”, IEEE Transactions on Microwave Theory and Techniques, Vol. 43, No. 8, pp. 1951–1959, Aug. 2001.

    Article  Google Scholar 

  23. S. A. Maas, “A GaAs MESFET Mixer with very low intermodulation”, IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 4, pp. 425–429, April 1987.

    Article  Google Scholar 

  24. S. A. Maas, Microwave Mixers, Artech House, 1993.

    Google Scholar 

  25. S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.

    Google Scholar 

  26. S. A. Maas, Nonlinear Microwave and RF circuits, Artech House, 2003.

    Google Scholar 

  27. M. Madihian, H. Fujii, H. Yoshida, H. Hisamitsu, and T. Yamazaki, “A 1–10 GHz 0.18µm CMOS chipset for multi-mode wireless applications”, IEEE International MTT-S Microwave Symposium, pp. 1865–1868, June 2001.

    Google Scholar 

  28. A. Orzati, F. Robin, H. Benedikter, W. Bächtold, “A V-band upconverting InP HEMT active mixer with low LO-power requirements”, IEEE Microwave and Wireless Components Letters, Vol. 13, No. 6, pp. 202–204, June 2003.

    Article  Google Scholar 

  29. J. Pihl, K. T. Christensen, E. Bruun, “direct downconverswion with swiching CMOS mixer”, IEEE International Symposium on Circuits and Systems, pp. I-117–120, May 2001.

    Google Scholar 

  30. R. A. Pucel, D. Massé and R. Bera, “Performance of GaAs MESFET mixers at X-band”, IEEE Transactions on Microwave Theory and Techniques, Vol. MTT-24, No. 6, pp. 351–360, June 1976.

    Article  Google Scholar 

  31. M. M. Radmanesh, N. A. Barakat, “State of the art S-band FET mixer design”, IEEE MTT-S International Microwave Symposium Digest, pp. 1435–1438, June 1994.

    Google Scholar 

  32. D. Roberson, “RFIC and MMIC Design and Technology”, IEE, London, 2001.

    Google Scholar 

  33. A. Q. Safarian, A Yazdi, P. Heydari, “Design and analysis of an ultrawideband distributed CMOS mixer”, IEEE Transactions on Very Large Scale Integration Systems, Vo. 13, No. 5, pp. 618–629, May 2005.

    Article  Google Scholar 

  34. A. A. M. Saleh, Theory of resistive mixers, M.I.T press, 1971.

    Google Scholar 

  35. U. Schaper, A. Schaefer, A. Werthof, G. Bök, “70–90 GHz balanced resistive PHFET Mixer MMIC, Electronic Letters”, Vol. 34, pp. 1377–1379, 1998.

    Google Scholar 

  36. E. Sönmez, A. Trasser, P. Abele, F. Gruson, K.-B. Schad and H. Schumacher, “24 GHz high sensitivity downconverter using commercial SiGe HBT MMIC foundry technology”, IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 68–71, April 2003.

    Google Scholar 

  37. M. T. Terrovits, R. G. Meyer, “Noise in current-commutating CMOS mixers”, IEEE Journal of Solid-State Circuits, pp. 772–783, June 1999.

    Google Scholar 

  38. G.K. Tie, C. S. Aitchinson, “Noise and associated conversion gain of a microwave MESFET gate mixer”, European Microwave Conference, pp. 579–584, 1983.

    Google Scholar 

  39. C. Tsironis, R. Meierer, R. Stahlmann, “Dual-gate MESFET mixers”, IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 3, pp. 248–255, March 1984.

    Article  Google Scholar 

  40. L. Verweyen, A. Tessmann, Y. Campos-Roca, M. Hassler, A. Bessemoulin, H. Tischler, W. Liebl, T. Grave, V. Güngerich, “LMDS Upand Down-Converter MMIC”, IEEE MTT-S International Microwave Symposium, Bosten, pp. 1685–1688, June 2000.

    Google Scholar 

  41. W. Zhao, C. Schöllhorn, E. Kasper amd C. Rheinfelder, “38 GHz coplanar harmonic mixer on silicon”, IEEE Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 138–141, Sept. 2001.

    Google Scholar 

  42. H. Zirath, C. Fager, M. Garcia, P. Sakalas, L. Landen and A. Alping, “Analog MMICs for millimeter-wave applications based on a commercial 0.14-mm pHEMT technology”, IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 11, pp. 2086–2092, Nov. 2001.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Mixers. In: Radio Frequency Integrated Circuits and Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35790-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-35790-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35788-9

  • Online ISBN: 978-3-540-35790-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics