Skip to main content
  • 5076 Accesses

Abstract

This chapter uses the structure graph to describe the direct interactions among the signals. This graph is used to analyse the redundancies which can be exploited for fault diagnosis and control reconfiguration. Faults are interpreted as violation of constraints. The analysis shows how component faults, which imply the violation of single constraints, can be found by defining and utilising appropriate redundancy relations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

5.11 Bibliographical notes

  1. C. Berge. Two Theorems in Graph Theory. Princeton University, 1957.

    Google Scholar 

  2. Blanke, M., Izadi-Zamanabadi, R., and Lootsma, T.F. (1998). Fault monitoring and reconfigurable control for a ship propulsion plant, Journal of Adaptive Control and Signal Processing, vol. 12, pp.671–688.

    Article  Google Scholar 

  3. M. Blanke and M. Staroswiecki: Fault-tolerant control with safe behaviour under multiple actuator or sensor faults — Theory and application. 14th IFAC Safeprocess Symposium, Beijing 2006.

    Google Scholar 

  4. T. Carpentier, R. Litwak and J.-Ph. Cassar. Criteria for the evaluation of FDI systems — Application to sensors location. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 1083–1088, Hull 1997.

    Google Scholar 

  5. G. Chartrand and O. R. Oellermann. Applied and algorithmic graph theory. Pure and applied mathematics. McGraw-Hill Inc., 1993.

    Google Scholar 

  6. M.-O. Cordier, P. Dague, F. Lévy, M. Dumas, J. Montmain, M. Staroswiecki, and L. Travé-Massuyès. AI and automatic control approaches of model-based diagnosis: links and underlying hypothesis. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 274–279, Budapest 2000.

    Google Scholar 

  7. P. Declerck and M. Staroswiecki. Characterisation of the canonical components of a structural graph for fault detection in large scale industrial plants. Proc. European Control Conference, Grenoble 1991.

    Google Scholar 

  8. A. L. Dulmage and N. S. Mendelsohn. Covering of bi-partite graphs. Canada J. Math., 10:517–534, 1958.

    MATH  MathSciNet  Google Scholar 

  9. A. L. Dulmage and N. S. Mendelsohn. A structure theory of bi-partite graphs of finite exterior dimension. Trans. of Royal Soc. Canada, Section III, 53: 1–13, 1959.

    MATH  Google Scholar 

  10. J. Edmonds. Paths, trees and flowers. Canad. J. of Math., 17: 449–467, 1965.

    MATH  MathSciNet  Google Scholar 

  11. L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canad. J. Math., 8: 399–404, 1956.

    MATH  MathSciNet  Google Scholar 

  12. L. R. Ford and D. R. Fulkerson. A simple algorithm for finding maximal network flows and an application to the hitchcock problem. Canad. J. Math., 9: 210–218, 1957.

    MATH  MathSciNet  Google Scholar 

  13. A. L. Gehin, M. Assas and M. Staroswiecki. Structural analysis of system reconfigurability. IFAC Symposium on Fault Detection Supervision and Safety for Technical Processes, pp. 292–297, Budapest 2000.

    Google Scholar 

  14. A. Georgiou and C. A. Floudas. Structural analysis and synthesis of feasible control systems: Theory and applications. Chemical Engineering Research and Design, 67: 600–618, 1989.

    Google Scholar 

  15. J. Gertler and D. Singer. A new structural framework for parity space equation based failure detection and isolation. Automatica, 26: 381–388, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  16. K. Golver and L. M. Silverman. Characterisation of structural controllability. IEEE Trans., AC-21,4: 534–537, 1976.

    Google Scholar 

  17. M. Gondran and M. Minoux. Graphes et algorithmes. Coll. Direction des Etudes et Recherches EDF, Eyrolles, (3d edition), 1995.

    Google Scholar 

  18. F. Harary. A graph theoretic approach to matrix inversion by partitioning. Numer. Math., 4: 128–135, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  19. J. E. Hopcroft and R. M. Karp. An algorithm for maximum matchings in bipartite graphs. SIAM J. Comp., 2: 225–231, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Iwasaki and H. A. Simon. Causality in device behaviour. Artificial Intelligence, 29: 3–32, 1986.

    Article  Google Scholar 

  21. R. Izadi-Zamanabadi, P. Amann, M. Blanke, V. Cocquempot, G. L. Gissinger, E. C. Kerrigan, T. F. Lootsma, J. M. Perronne and G. Schreier. Ship propulsion control and reconfiguration. in [3], pp. 285–315.

    Google Scholar 

  22. H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2: 83–97, 1956.

    MathSciNet  Google Scholar 

  23. A. Leitold and K. M. Hangos. Structural solvability analysis of dynamic process models. Computers and Chemical Engineering, 25: 1633–1646, 2001.

    Article  Google Scholar 

  24. C. T. Lin. Structural controllability. IEEE Trans., AC-19: 201–208, 1974.

    Google Scholar 

  25. C. T. Lin. System structure and minimal structure controllability. IEEE Trans., AC-22: 855–862, 1977.

    Google Scholar 

  26. X. Lin, M. O. Tade and R. B. Newell. Output structural controllability condition for the synthesis of control systems for chemical processes. Int. J. Systems Sci., 22: 107–132, 1991.

    MATH  MathSciNet  Google Scholar 

  27. M. Meyer, J.-M. Le Lann, B. Koehret and M. Enjalbert. Optimal selection of sensor location on a complex plant using a graph oriented approach. Computer Chemical Eng., 18: 535–540, 1994.

    Article  Google Scholar 

  28. M. Morari and G. Stephanopoulos. Studies in the synthesis of control structures for chemical processes. Part ii: Structural aspects and the synthesis of alternative feasible control. AIChE Journal, 40: 232–246, 1980.

    Article  MathSciNet  Google Scholar 

  29. K. Murota. Systems analysis by graphs and matroïds. Structural solvability and controllability. Springer Verlag, 1987.

    Google Scholar 

  30. K. J. Reinschke. Multivariable Control: A Graph Theoretic Approach. Springer-Verlag, 1988.

    Google Scholar 

  31. C. Schizas and F. J. Evans. A graph theoretic approach to multivariables control system design. Automatica, 17: 371–377, 1981.

    Article  MATH  Google Scholar 

  32. M. Staroswiecki, S. Attouche and M. L. Assas. A graphic approach for reconfigurability analysis. 10th Int. Workshop on Principles of Diagnosis, Loch Awe 1999.

    Google Scholar 

  33. M. Staroswiecki, J. P. Cassar and P. Declerck. A structural framework for the design of FDI in large scale industrial plants. In P. M. Frank and R. Clark (Eds.). Issues of Fault Diagnosis for Dynamical Systems. Springer-Verlag, London 1999 [195].

    Google Scholar 

  34. M. Staroswiecki and P. Declerck. Analytical redundancy in non-linear interconnected systems by means of structural analysis. IFAC/IMACS/IFORS Conf. AIPAC’ 89, Nancy, France, 1989.

    Google Scholar 

  35. D. V. Steward. On an approach to techniques for the analysis of the structure of large systems of equations. SIAM Review, 4: 321–342, 1962.

    Article  MATH  MathSciNet  Google Scholar 

  36. M. Tagina, J.-P. Cassar, G. Dauphin-Tanguy and M. Staroswiecki. Bond-graph models for direct generation of formal fault detection systems. Systems Analysis Modelling and Simulation J., 23: 1–17, 1996.

    MATH  Google Scholar 

  37. J. Unger, A. Kröner and W. Marquardt. Structural analysis of differential-algebraic equation systems — theory and applications. Computers and Chemical Engineering, 19: 867–882, 1995.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Structural analysis. In: Diagnosis and Fault-Tolerant Control. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-35653-0_5

Download citation

Publish with us

Policies and ethics