Skip to main content

The Structurally Constrained Neutral Model of Protein Evolution

  • Chapter
Structural Approaches to Sequence Evolution

The observation that protein sequences accumulate substitutions in time at an almost regular rate [1] created a great interest in molecular evolution, suggesting that substitutions in protein sequences can be used as an effective ‘molecular clock’ for estimating the time elapsed from the last common ancestor among genes [1-5]. This approach opened a new avenue for reconstructing the tree of life by analyzing the sequences of orthologous genes, whose evolutionary tree coincides with the tree of the species containing them. The practical importance of the study of molecular evolution became therefore evident as a way to reconstruct natural histories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Zuckerkandl, L. Pauling, in Horizons in Biochemistry, ed. by M. Kasha, B. Pullman (Academic Press, New York, 1962), pp. 189-225

    Google Scholar 

  2. E. Margoliash, Proc. Natl. Acad. Sci. USA 50, 672 (1963)

    ADS  Google Scholar 

  3. D. Graur, W.H. Li, Fundamentals of Molecular Evolution (Sinauer, Sunderland, 2000)

    Google Scholar 

  4. M. Nei, S. Kumar, Molecular Evolution and Phylogenetics (Oxford University Press, 2000)

    Google Scholar 

  5. L. Bromham, D. Penny, Nat. Rev. Genet. 4, 216 (2003)

    Google Scholar 

  6. M. Kimura, Nature 217, 624 (1968)

    ADS  Google Scholar 

  7. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, 1983)

    Google Scholar 

  8. J.-L. King, T.H. Jukes, Science 164, 788 (1969)

    ADS  Google Scholar 

  9. J.H. Gillespie, The Causes of Molecular Evolution (Oxford University Press, Oxford, 1991)

    Google Scholar 

  10. P. Schuster, W. Fontana, P.F. Stadler, I.L. Hofacker, Proc. R. Soc. London B 255, 279 (1994)

    ADS  Google Scholar 

  11. M.A. Huynen, P.F. Stadler, W. Fontana, Proc. Natl. Acad. Sci. USA 93, 397 (1996)

    ADS  Google Scholar 

  12. W. Fontana, P. Schuster, Science 280, 1451 (1998)

    ADS  Google Scholar 

  13. E. Bornberg-Bauer, Biophys. J. 73, 2393 (1997)

    Google Scholar 

  14. E. Bornberg-Bauer, H.S. Chan, Proc. Natl. Acad. Sci. USA 96, 10689 (1999)

    ADS  Google Scholar 

  15. A. Babajide, I.L. Hofacker, M.J. Sippl, P.F. Stadler, Folding Des. 2, 261 (1997)

    Google Scholar 

  16. A.M. Gutin, V.I. Abkevich, E.I. Shakhnovich, Proc. Natl. Acad. Sci. USA 92, 1282(1995)

    ADS  Google Scholar 

  17. N.V. Dokholyan, E.I. Shakhnovich, J. Mol. Biol. 312, 289 (2001)

    Google Scholar 

  18. L.A. Mirny, E.I. Shakhnovich, J. Mol. Biol. 291, 177 (1999)

    Google Scholar 

  19. N.V. Dokholyan, B. Shakhnovich, E.I. Shakhnovich, Proc. Natl. Acad. Sci. USA 99, 14132 (2002)

    ADS  Google Scholar 

  20. S. Govindarajan, R.A. Goldstein, Biopolymers 42, 427 (1997)

    Google Scholar 

  21. S. Govindarajan, R.A. Goldstein, Procl. Natl. Acad. Sci. USA 95, 5545 (1998)

    ADS  Google Scholar 

  22. D.M. Taverna, R.A. Goldstein, Proteins 46, 105 (2002)

    Google Scholar 

  23. H.J. Bussemaker, D. Thirumalai, J.K. Bhattacharjee, Phys. Rev. Lett. 79, 3530(1997)

    ADS  Google Scholar 

  24. G. Tiana, R.A. Broglia, H.E. Roman, E. Vigezzi, E.I. Shakhnovich, J. Chem. Phys. 108, 757 (1998)

    ADS  Google Scholar 

  25. G. Parisi, J. Echave, Mol. Biol. Evol. 18, 750 (2001)

    Google Scholar 

  26. G. Parisi, J. Echave, Gene 345, 45 (2005)

    Google Scholar 

  27. Y. Xia, M. Levitt, Proc. Natl. Acad. Sci. USA 99, 10382 (2002)

    ADS  Google Scholar 

  28. Y. Xia, M. Levitt, Curr. Op. Struct. Biol. 14, 202 (2004)

    Google Scholar 

  29. T. Aita, M. Ota, Y. Husimi, J. Theor. Biol. 221, 599 (2003)

    Google Scholar 

  30. J.D. Bloom, J.J. Silberg, C.O. Wilke, D.A. Drummond, C. Adami, F.H. Arnold, Proc. Natl. Acad. Sci. USA 102, 606 (2005)

    ADS  Google Scholar 

  31. U. Bastolla, H.E. Roman, M. Vendruscolo, J. Theor. Biol. 200, 49 (1999)

    Google Scholar 

  32. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, J. Mol. Evol. 56, 243 (2003)

    Google Scholar 

  33. R.M. Sweet, D. Eisenberg, J. Mol. Biol. 171, 479 (1983)

    Google Scholar 

  34. L. Holm, C. Sander, Proteins 19, 256 (1994)

    Google Scholar 

  35. N. Kannan, S. Vishveshwara, J. Mol. Biol. 292, 441 (1999)

    Google Scholar 

  36. N. Kannan, S. Vishveshwara, Prot. Eng. 13, 753 (2000)

    Google Scholar 

  37. M. Porto, U. Bastolla, H.E. Roman, M. Vendruscolo, Phys. Rev. Lett. 92, 218101(2004)

    ADS  Google Scholar 

  38. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, Proteins 58, 22 (2005)

    Google Scholar 

  39. M. Porto, H.E. Roman, M. Vendruscolo, U. Bastolla, Mol. Biol. Evol. 22, 630; Mol. Biol. Evol. 22, 1156 (2005)

    Google Scholar 

  40. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, Gene 347, 219 (2005)

    Google Scholar 

  41. E. van Nimwegen, J.P. Crutchfield, M. Huynen, Proc. Natl. Acad. Sci. USA 96, 9716(1999)

    ADS  Google Scholar 

  42. M. Eigen, Naturwissenschaften 58, 465 (1971)

    ADS  Google Scholar 

  43. M. Eigen, J. Mc Caskill, P. Schuster, Adv. Chem. Phys. 75, 149 (1989)

    Google Scholar 

  44. J.W. Drake, J.J. Hollandy, Proc. Natl. Acad. Sci. USA 96, 13910 (1999)

    ADS  Google Scholar 

  45. R. Durrett, Probability Models for DNA Sequence Evolution, (Springer, Berlin Heidelberg New York 2002)

    MATH  Google Scholar 

  46. J. Berg, S. Willmann, M. Lässig, BMC Evol. Biol. 4, 42 (2004)

    Google Scholar 

  47. G. Sella, A.E. Hirsh, Proc. Natl. Acad. Sci. USA 102, 9541 (2005)

    ADS  Google Scholar 

  48. I. Leuthauser, J. Stat. Phys. 48, 343 (1987)

    ADS  Google Scholar 

  49. P. Tarazona, Phys. Rev. A 45, 6038 (1992)

    ADS  Google Scholar 

  50. T. Ohta, M. Kimura, J. Mol. Evol. 1, 18 (1971)

    Google Scholar 

  51. T. Ohta, Nature 246, 96 (1973)

    ADS  Google Scholar 

  52. R.A. Fisher, The Genetic Theory of Natural Selection (Dover, 1930)

    Google Scholar 

  53. J. McDonald, M. Kreitman, Nature 351, 652 (1991)

    ADS  Google Scholar 

  54. N.G.C. Smith, A. Eyre-Walker, Nature 415, 1022 (2002)

    ADS  Google Scholar 

  55. T. Ohta, J. Mol. Evol. 41, 115 (1995)

    Google Scholar 

  56. D.J. Lambert, N.A. Moran, Proc. Natl. Acad. Sci. USA 95, 4458 (1998)

    ADS  Google Scholar 

  57. U. Bastolla, A. Moya, E. Viguera, E. van Ham, J. Mol. Biol. 343, 1451 (2004)

    Google Scholar 

  58. S. Aksoy, Insect Mol. Biol. 4, 23 (1995)

    Google Scholar 

  59. M.A. Fares, M.X. Ruiz-Gonzalez, A. Moya, S.F. Elena, E. Barrio, Nature 417, 398(2002)

    ADS  Google Scholar 

  60. M.C. Orencia, J.S. Yoon, J.E. Ness, W.P. Stemmer, R.C. Stevens, Nat. Struct. Biol. 8, 238 (2001)

    Google Scholar 

  61. C.O. Wilke, BMC Genet. 5, 25 (2004)

    Google Scholar 

  62. A.R. Fersht, Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding (W.H. Freeman, 1999)

    Google Scholar 

  63. C.M Dobson, Nature 426, 884 (2003)

    ADS  Google Scholar 

  64. V.N. Uversky, Cell. Mol. Life Sci. 60, 1852 (2003)

    Google Scholar 

  65. K.A. Bava, M.M. Gromiha, H. Uedaira, K. Kitajima, A. Sarai, Nucl. Ac. Res. 32, D120 (2004)

    Google Scholar 

  66. N. Sueoka, Proc. Natl. Acad. Sci. USA 47, 469 (1961)

    Google Scholar 

  67. J.R. Lobry, Gene 205, 309 (1997)

    Google Scholar 

  68. L. Holm, C. Sander, Science 273, 595 (1996)

    ADS  Google Scholar 

  69. B. Rost, Folding Des. 2, S19 (1997)

    Google Scholar 

  70. D. Cozzetto, A. Di Matteo, A. Tramontano, FEBS J. 272, 881 (2005)

    Google Scholar 

  71. S.F. Atschul, T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Nucl. Acids Res. 25, 3389 (1997)

    Google Scholar 

  72. N. Nagano, C.A. Orengo, J.M. Thornton, J. Mol. Biol. 321, 741 (2002)

    Google Scholar 

  73. A.G. Murzin, S.E. Brenner, T. Hubbard, C. Chothia, J. Mol. Biol. 247, 536 (1995)

    Google Scholar 

  74. C.A. Orengo, A.D. Michie, S. Jones, D.T. Jones, M.B. Swindells, J.M. Thornton, Structure 5, 1093 (1997)

    Google Scholar 

  75. C. Chothia, A.M. Lesk, EMBO J. 5, 823 (1986)

    Google Scholar 

  76. D. Devos, A. Valencia, Proteins 41, 98 (2000)

    Google Scholar 

  77. N.V. Grishin, J. Struct. Biol. 134, 167 (2001)

    Google Scholar 

  78. W.R. Taylor, Nature 416, 657 (2002)

    ADS  Google Scholar 

  79. A. Harrison, F. Pearl, R. Mott, J. Thornton, C. Orengo, J. Mol. Biol. 323, 909(2002)

    Google Scholar 

  80. M. Zuker, D. Sankoff, Bull. Math. Biol. 46, 591 (1984)

    MATH  Google Scholar 

  81. J.U. Bowie, R. Lüthy, D. Eisenberg, Science 253, 164 (1991)

    ADS  Google Scholar 

  82. U. Bastolla, M. Vendruscolo, E.W. Knapp, Proc. Natl. Acad. Sci. USA 97, 3977(2000)

    ADS  Google Scholar 

  83. U. Bastolla, J. Farwer, E.W. Knapp, M. Vendruscolo, Proteins 44, 79 (2001)

    Google Scholar 

  84. R.A. Goldstein, Z.A. Luthey-Schulten, P.G. Wolynes, Proc. Natl. Acad. Sci. USA 89, 4918 (1992)

    ADS  Google Scholar 

  85. U. Hobohm, C. Sander, Protein Sci. 3, 522 (1994)

    Article  Google Scholar 

  86. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, J. Mol. Evol. 57, S103 (2003)

    Google Scholar 

  87. U. Bastolla, L. Demetrius, PEDS 18, 405 (2005)

    Google Scholar 

  88. B. Derrida, Phys. Rev. B 24, 2613 (1981)

    MathSciNet  ADS  Google Scholar 

  89. E.I. Shakhnovich, A.M. Gutin, Biophys. Chem. 34, 187 (1989)

    Google Scholar 

  90. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, Phys. Ref. Lett. 89, 208101(2002)

    ADS  Google Scholar 

  91. C.H. Langley, W.M. Fitch, J. Mol. Evol. 3, 161 (1974)

    Google Scholar 

  92. N. Takahata, Genetics 116, 169 (1987)

    Google Scholar 

  93. S.Y.W. Ho, M.J. Phillips, A. Cooper, A.J. Drummond, Mol. Biol. Evol. 22, 1561(2005)

    Google Scholar 

  94. J. Felsenstein, J. Mol. Evol. 17, 368 (1981)

    Google Scholar 

  95. J. Overington, M.S. Johnson, A. Sali, T.L. Blundell, Proc. Roy. Soc. Lond. B 241, 132 (1990)

    ADS  Google Scholar 

  96. D.T. Jones, W.R. Taylor, J.M. Thornton, Comp. Appl. Biosci. 8, 275 (1992)

    Google Scholar 

  97. S. Henikoff, J.G. Henikoff, Proteins 17, 49 (1993)

    Google Scholar 

  98. A.L. Halpern, W.J. Bruno, Mol. Biol. Evol. 15, 910 (1998)

    Google Scholar 

  99. P. Liò, N. Goldman, Genome Res. 8, 1233 (1998)

    Google Scholar 

  100. J.M. Koshi, R.A. Goldstein, Proteins 32, 289 (1998)

    Google Scholar 

  101. J.M. Koshi, D.P. Mindell, R.A. Goldstein, Mol. Biol. Evol. 16, 173 (1999)

    Google Scholar 

  102. J.L. Thorne, Curr. Opin. Genet. Dev. 10, 602 (2000)

    Google Scholar 

  103. M.S. Fornasari, G. Parisi, J. Echave, Mol. Biol. Evol. 19, 352 (2002)

    Google Scholar 

  104. G. Casari, M.J. Sippl, J. Mol. Biol. 224, 725 (1992)

    Google Scholar 

  105. H. Li, C. Tang, N.S. Wingreen, Phys. Rev. Lett. 79, 765 (1997)

    ADS  Google Scholar 

  106. M. Vendruscolo, E. Kussell, E. Domany, Folding Des. 2, 295 (1997)

    Google Scholar 

  107. A. Bateman, E. Birney, R. Durbin, S.R. Eddy, K.L. Howe, E.L.L. Sonnhammer, Nucl. Ac. Res. 28, 263 (2000)

    Google Scholar 

  108. S. Miyazawa, R.L. Jernigan, Macromolecules 18, 534 (1985)

    ADS  Google Scholar 

  109. A.V. Finkelstein, A.Ya. Badretdinov, A.M. Gutin, Proteins 23, 142 (1995)

    Google Scholar 

  110. E.I. Shakhnovich, A.M. Gutin, Proc. Natl. Acad. Sci. USA 90, 7195 (1993)

    ADS  Google Scholar 

  111. N.V. Dokholyan, L.A. Mirny, E.I. Shakhnovich, Physica A 314, 600 (2002)

    ADS  Google Scholar 

  112. P. Koehl, M. Levitt, Proc. Natl. Acad. Sci. USA 99, 1280 (2002)

    ADS  Google Scholar 

  113. J.L. England, E.I. Shakhnovich, Phys. Rev. Lett. 90, 218101 (2003)

    Google Scholar 

  114. A.R. Kinjo, K. Nishikawa, Bioinformatics 20, 2504 (2004)

    Google Scholar 

  115. S. Henikoff, J.G. Henikoff, Proc. Natl. Acad. Sci. USA 89, 10915 (1992)

    ADS  Google Scholar 

  116. N. Sueoka, J. Mol. Evol. 40, 318 (1995)

    Google Scholar 

  117. U. Bastolla, M. Porto, H.E. Roman, M. Vendruscolo, BMC Evol. Biol. 6, 43 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (2007). The Structurally Constrained Neutral Model of Protein Evolution. In: Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M. (eds) Structural Approaches to Sequence Evolution. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35306-5_4

Download citation

Publish with us

Policies and ethics