Skip to main content

Viral Vectors: A Wide Range of Choices and High Levels of Service

  • Chapter
Conditional Mutagenesis: An Approach to Disease Models

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 178))

Abstract

Viruses are intracellular parasites with simple DNA or RNA genomes. Virus life revolves around three steps: infection of a host cell, replication of its genome within the host cell environment, and formation of new virions; this process is often but not always associated with pathogenic effects against the host organism. Since the mid-1980s, the main goal of viral vectorology has been to develop recombinant viral vectors for long-term gene delivery to mammalian cells, with minimal associated toxicity. Today, several viral vector systems are close to achieving this aim, providing stable transgenic expression in many different cell types and tissues. Here we review application characteristics of four vector systems, derived from adeno-associated viruses, adenoviruses, retroviruses and herpes simplex virus-1, for in vivo gene delivery. We discuss the transfer capacity of the expression vectors, the stability of their transgenic expression, the tropism of the recombinant viruses, the likelihood of induction of immunotoxicity, and the ease (or difficulty) of the virus production. In the end, we discuss applications of these vectors for delivery of three molecular systems for conditional mutagenesis, two for inducible transcriptional control of transgenic expression (the tet and the dimerizer systems), and the third one for inducible control of endogenous gene expression based on RNA interference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Apparailly F, Millet V, Noel D, Jacquet C, Sany J, Jorgensen C (2002) Tetracycline-inducible interleukin-10 gene transfer mediated by an adeno-associated virus: application to experimental arthritis. Hum Gene Ther 13:1179–1188

    Article  PubMed  CAS  Google Scholar 

  • Auricchio A, Gao GP, Yu QC, Raper S, Rivera VM, Clackson T, Wilson JM (2002a) Constitutive and regulated expression of processed insulin following in vivo hepatic gene transfer. Gene Ther 9:963–971

    Article  PubMed  CAS  Google Scholar 

  • Auricchio A, Rivera VM, Clackson T, O’Connor EE, Maguire AM, Tolentino MJ, Bennett J, Wilson JM (2002b) Pharmacological regulation of protein expression from adeno-associated viral vectors in the eye. Mol Ther 6:238–242

    Article  PubMed  CAS  Google Scholar 

  • Bantounas I, Phylactou LA, Uney JB (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J Mol Endocrinol 33:545–557

    Article  PubMed  CAS  Google Scholar 

  • Baskar JF, Smith PP, Nilaver G, Jupp RA, Hoffmann S, Peffer NJ, Tenney DJ, Colberg-Poley AM, Ghazal P, Nelson JA (1996) The enhancer domain of the human cytomegalovirus major immediate-early promoter determines cell type-specific expression in transgenic mice. J Virol 70:3207–3214

    PubMed  CAS  Google Scholar 

  • Bohl D, Salvetti A, Moullier P, Heard JM (1998) Control of erythropoietin delivery by doxycycline in mice after intramuscular injection of adeno-associated vector. Blood 92:1512–1517

    PubMed  CAS  Google Scholar 

  • Bowers WJ, Olschowka JA, Federoff HJ (2003) Immune responses to replication-defective HSV-1 type vectors within the CNS: implications for gene therapy. Gene Ther 10:941–945

    Article  PubMed  CAS  Google Scholar 

  • Büchen-Osmond C (2001) The Universal Virus Database of the International Committee on Taxonomy of Viruses (ICTVdB): ≥http://www.ncbi.nlm.nih.gov/ICTVdb/index.htm. Cited 15 June 2006

    Google Scholar 

  • Burns JC, Friedmann T, Driever W, Burrascano M, Yee JK (1993) Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A 90:8033–8037

    Article  PubMed  CAS  Google Scholar 

  • Chao H, Liu Y, Rabinowitz J, Li C, Samulski RJ, Walsh CE (2000) Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors. Mol Ther 2:619–623

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Stamatoyannopoulos G, Song CZ (2003) Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 63:4801–4804

    PubMed  CAS  Google Scholar 

  • Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Joussemet B, Bujard H, Samulski RJ, Favre D, Moullier P (2004) Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 9:410–418

    Article  PubMed  CAS  Google Scholar 

  • Clark KR, Liu X, McGrath JP, Johnson PR (1999) Highly purified recombinant adeno-associated virus vectors are biologically active and free of detectable helper and wild-type viruses. Hum Gene Ther 10:1031–1039

    Article  PubMed  CAS  Google Scholar 

  • Davidson BL, Harper SQ (2005) Viral delivery of recombinant short hairpin RNAs. Methods Enzymol 392:145–173

    PubMed  CAS  Google Scholar 

  • Davidson BL, Stein CS, Heth JA, Martins I, Kotin RM, Derksen TA, Zabner J, Ghodsi A, Chiorini JA (2000) Recombinant adeno-associated virus type 2, 4, and 5 vectors: transduction of variant cell types and regions in the mammalian central nervous system. Proc Natl Acad Sci U S A 97:3428–3432

    Article  PubMed  CAS  Google Scholar 

  • Di Pasquale G, Davidson BL, Stein CS, Martins I, Scudiero D, Monks A, Chiorini JA (2003) Identification of PDGFR as a receptor for AAV-5 transduction. Nat Med 9:1306–1312

    Article  PubMed  CAS  Google Scholar 

  • Dittgen T, Nimmerjahn A, Komai S, Licznerski P, Waters J, Margrie TW, Helmchen F, Denk W, Brecht M, Osten P (2004) Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proc Natl Acad Sci U S A 101:18206–18211

    Article  PubMed  CAS  Google Scholar 

  • Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  • Fitzsimons HL, McKenzie JM, During MJ (2001) Insulators coupled to a minimal bidirectional tet cassette for tight regulation of rAAV-mediated gene transfer in the mammalian brain. Gene Ther 8:1675–1681

    Article  PubMed  CAS  Google Scholar 

  • Fotaki ME, Pink JR, Mous J (1997) Tetracycline-responsive gene expression in mouse brain after amplicon-mediated gene transfer. Gene Ther 4:901–908

    Article  PubMed  CAS  Google Scholar 

  • Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67:1–25

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger M, Morris RP, Fux C, Rimann M, von Stockar B, Thompson CJ, Bailey JE (2000) Streptogramin-based gene regulation systems for mammalian cells. Nat Biotechnol 18:1203–1208

    Article  PubMed  CAS  Google Scholar 

  • Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, Galun E, Gazit Z, Jorgensen C, Gazit D (2004) Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 9:587–595

    Article  PubMed  CAS  Google Scholar 

  • Gaggar A, Shayakhmetov DM, Lieber A (2003) CD46 is a cellular receptor for group B adenoviruses. Nat Med 9:1408–1412

    Article  PubMed  CAS  Google Scholar 

  • Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 99:11854–11859

    Article  PubMed  CAS  Google Scholar 

  • Geller AI, Breakefield XO (1988) A defective HSV-1 vector expresses Escherichia coli beta-galactosidase in cultured peripheral neurons. Science 241:1667–1669

    Article  PubMed  CAS  Google Scholar 

  • Gilbert R, Dudley RW, Liu AB, Petrof BJ, Nalbantoglu J, Karpati G (2003) Prolonged dystrophin expression and functional correction of mdx mouse muscle following gene transfer with a helper-dependent (gutted) adenovirus-encoding murine dystrophin. Hum Mol Genet 12:1287–1299

    Article  PubMed  CAS  Google Scholar 

  • Goins WF, Lee KA, Cavalcoli JD, O’Malley ME, DeKosky ST, Fink DJ, Glorioso JC (1999) Herpes simplex virus type 1 vector-mediated expression of nerve growth factor protects dorsal root ganglion neurons from peroxide toxicity. J Virol 73:519–532

    PubMed  CAS  Google Scholar 

  • Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Kay MA (2003) From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 3:281–304

    Article  PubMed  CAS  Google Scholar 

  • Grimm D, Kern A, Rittner K, Kleinschmidt JA (1998) Novel tools for production and purification of recombinant adeno-associated virus vectors. Hum Gene Ther 9:2745–2760

    PubMed  CAS  Google Scholar 

  • Grimm D, Kay MA, Kleinschmidt JA (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7:839–850

    Article  PubMed  CAS  Google Scholar 

  • Haberman RP, McCown TJ, Samulski RJ (1998) Inducible long-term gene expression in brain with adeno-associated virus gene transfer. Gene Ther 5:1604–1611

    Article  PubMed  CAS  Google Scholar 

  • Halbert CL, Allen JM, Miller AD (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol 75:6615–6624

    Article  PubMed  CAS  Google Scholar 

  • Hauck B, Chen L, Xiao W (2003) Generation and characterization of chimeric recombinant AAV vectors. Mol Ther 7:419–425

    Article  PubMed  CAS  Google Scholar 

  • Hosono T, Mizuguchi H, Katayama K, Xu ZL, Sakurai F, Ishii-Watabe A, Kawabata K, Yamaguchi T, Nakagawa S, Mayumi T, Hayakawa T (2004) Adenovirus vector-mediated doxycycline-inducible RNA interference. Hum Gene Ther 15:813–819

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Rampalli S, George D, Press C, Bremer EG, O’Gorman MR, Bohn MC (2004) Tight regulation from a single tet-off rAAV vector as demonstrated by flow cytometry and quantitative, real-time PCR. Gene Ther 11:1057–1067

    Article  PubMed  CAS  Google Scholar 

  • Kafri T, van Praag H, Gage FH, Verma IM (2000) Lentiviral vectors: regulated gene expression. Mol Ther 1:516–521

    Article  PubMed  CAS  Google Scholar 

  • Kim IH, Jozkowicz A, Piedra PA, Oka K, Chan L (2001) Lifetime correction of genetic deficiency in mice with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A 98:13282–13287

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  PubMed  CAS  Google Scholar 

  • Markusic D, Oude-Elferink R, Das AT, Berkhout B, Seppen J (2005) Comparison of single regulated lentiviral vectors with rtTA expression driven by an autoregulatory loop or a constitutive promoter. Nucleic Acids Res 33:e63

    Article  PubMed  Google Scholar 

  • Martin KR, Klein RL, Quigley HA (2002) Gene delivery to the eye using adeno-associated viral vectors. Methods 28:267–275

    Article  PubMed  CAS  Google Scholar 

  • Matsukura S, Jones PA, Takai D (2003) Establishment of conditional vectors for hairpin siRNA knockdowns. Nucleic Acids Res 31:e77

    Article  PubMed  Google Scholar 

  • Matsushita T, Elliger S, Elliger C, Podsakoff G, Villarreal L, Kurtzman GJ, Iwaki Y, Colosi P (1998) Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 5:938–945

    Article  PubMed  CAS  Google Scholar 

  • Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL, Carter EE, Barber RD, Baban DF, Kingsman SM, Kingsman AJ, O’Malley K, Mitrophanous KA (2001) Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 10:2109–2121

    Article  PubMed  CAS  Google Scholar 

  • McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 10:2112–2118

    Article  PubMed  CAS  Google Scholar 

  • McCarty DM, Young SM Jr, Samulski RJ (2004) Integration of adeno-associated virus (AAV) and recombinant AAV vectors. Annu Rev Genet 38:819–845

    Article  PubMed  CAS  Google Scholar 

  • McConnell MJ, Imperiale MJ (2004) Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 15:1022–1033

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Mitrophanous K, Yoon S, Rohll J, Patil D, Wilkes F, Kim V, Kingsman S, Kingsman A, Mazarakis N (1999) Stable gene transfer to the nervous system using a non-primate lentiviral vector. Gene Ther 6:1808–1818

    Article  PubMed  CAS  Google Scholar 

  • Miyagishi M, Taira K (2002) Development and application of siRNA expression vector. Nucleic Acids Res Suppl:113–114

    Google Scholar 

  • Miyoshi H, Blomer U, Takahashi M, Gage FH, Verma IM (1998) Development of a self-inactivating lentivirus vector. J Virol 72:8150–8157

    PubMed  CAS  Google Scholar 

  • Mizuguchi H, Hayakawa T (2004) Targeted adenovirus vectors. Hum Gene Ther 15:1034–1044

    Article  PubMed  CAS  Google Scholar 

  • Muruve DA (2004) The innate immune response to adenovirus vectors. Hum Gene Ther 15:1157–1166

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Storm TA, Kay MA (2000) Increasing the size of rAAV-mediated expression cassettes in vivo by intermolecular joining of two complementary vectors. Nat Biotechnol 18:527–532

    Article  PubMed  CAS  Google Scholar 

  • Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa J, Taira K (2000) Control of the functional activity of an antisense RNA by a tetracycline-responsive derivative of the human U6 snRNA promoter. Hum Gene Ther 11:577–585

    Article  PubMed  CAS  Google Scholar 

  • Pages JC, Bru T (2004) Toolbox for retrovectorologists. J Gene Med 6[Suppl 1]: S67–S82

    Article  PubMed  CAS  Google Scholar 

  • Palmer D, Ng P (2003) Improved system for helper-dependent adenoviral vector production. Mol Ther 8:846–852

    Article  PubMed  CAS  Google Scholar 

  • Palmer DJ, Ng P (2005) Helper-dependent adenoviral vectors for gene therapy. Hum Gene Ther 16:1–16

    Article  PubMed  CAS  Google Scholar 

  • Paterna JC, Büeler H (2002) Recombinant adeno-associated virus vector design and gene expression in the mammalian brain. Methods 28:208–218

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A (2004) Lentiviral transgenesis. Transgenic Res 13:513–522

    Article  PubMed  CAS  Google Scholar 

  • Poeschla EM (2003) Non-primate lentiviral vectors. Curr Opin Mol Ther 5:529–540

    PubMed  CAS  Google Scholar 

  • Poeschla EM, Wong-Staal F, Looney DJ (1998) Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med 4:354–357

    Article  PubMed  CAS  Google Scholar 

  • Pollock R, Clackson T (2002) Dimerizer-regulated gene expression. Curr Opin Biotechnol 13:459–467

    Article  PubMed  CAS  Google Scholar 

  • Pollock R, Issner R, Zoller K, Natesan S, Rivera VM, Clackson T (2000) Delivery of a stringent dimerizer-regulated gene expression system in a single retroviral vector. Proc Natl Acad Sci U S A 97:13221–13226

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, Samulski RJ (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol 76:791–801

    Article  PubMed  CAS  Google Scholar 

  • Regulier E, Trottier Y, Perrin V, Aebischer P, Deglon N (2003) Early and reversible neuropathology induced by tetracycline-regulated lentiviral overexpression of mutant huntingtin in rat striatum. Hum Mol Genet 12:2827–2836

    Article  PubMed  CAS  Google Scholar 

  • Rivera VM, Clackson T, Natesan S, Pollock R, Amara JF, Keenan T, Magari SR, Phillips T, Courage NL, Cerasoli F Jr, Holt DA, Gilman M (1996) A humanized system for pharmacologic control of gene expression. Nat Med 2:1028–1032

    Article  PubMed  CAS  Google Scholar 

  • Rivera VM, Ye X, Courage NL, Sachar J, Cerasoli F Jr, Wilson JM, Gilman M (1999) Long-term regulated expression of growth hormone in mice after intramuscular gene transfer. Proc Natl Acad Sci U S A 96:8657–8662

    Article  PubMed  CAS  Google Scholar 

  • Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M, Breakefield XO, Fraefel C (1998) Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Ther 9:2787–2794

    PubMed  CAS  Google Scholar 

  • Saeki Y, Fraefel C, Ichikawa T, Breakefield XO, Chiocca EA (2001) Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Ther 3:591–601

    Article  PubMed  CAS  Google Scholar 

  • Salucci V, Scarito A, Aurisicchio L, Lamartina S, Nicolaus G, Giampaoli S, Gonzalez-Paz O, Toniatti C, Bujard H, Hillen W, Ciliberto G, Palombo F (2002) Tight control of gene expression by a helper-dependent adenovirus vector carrying the rtTA2(s)-M2 tetracycline transactivator and repressor system. Gene Ther 9:1415–1421

    Article  PubMed  CAS  Google Scholar 

  • Samaniego LA, Neiderhiser L, DeLuca NA (1998) Persistence and expression of the herpes simplex virus genome in the absence of immediate-early proteins. J Virol 72:3307–3320

    PubMed  CAS  Google Scholar 

  • Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, Graham FL, Beaudet AL, Kochanek S (1998) Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 18:180–183

    Article  PubMed  CAS  Google Scholar 

  • Shah AC, Benos D, Gillespie GY, Markert JM (2003) Oncolytic viruses: clinical applications as vectors for the treatment of malignant gliomas. J Neurooncol 65:203–226

    Article  PubMed  Google Scholar 

  • Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90:53–59

    Article  PubMed  CAS  Google Scholar 

  • Spaete RR, Frenkel N(1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30:295–304

    Article  PubMed  CAS  Google Scholar 

  • Stavropoulos TA, Strathdee CA (1998) An enhanced packaging system for helper-dependent herpes simplex virus vectors. J Virol 72:7137–7143

    PubMed  CAS  Google Scholar 

  • Summerford C, Samulski RJ (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 72:1438–1445

    PubMed  CAS  Google Scholar 

  • Sun L, Li J, Xiao X (2000) Overcoming adeno-associated virus vector size limitation through viral DNA heterodimerization. Nat Med 6:599–602

    Article  PubMed  CAS  Google Scholar 

  • Tenenbaum L, Chtarto A, Lehtonen E, Velu T, Brotchi J, Levivier M (2004) Recombinant AAV-mediated gene delivery to the central nervous system. J Gene Med 6[Suppl 1]:S212–S222

    Article  PubMed  CAS  Google Scholar 

  • Tuschl T (2002) Expanding small RNA interference. Nat Biotechnol 20:446–448

    Article  PubMed  CAS  Google Scholar 

  • Unsinger J, Kroger A, Hauser H, Wirth D (2001) Retroviral vectors for the transduction of autoregulated, bidirectional expression cassettes. Mol Ther 4:484–489

    Article  PubMed  CAS  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D, Holstege FC, Brummelkamp TR, Agami R, Clevers H (2003) Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4:609–615

    Article  PubMed  CAS  Google Scholar 

  • Vigna E, Cavalieri S, Ailles L, Geuna M, Loew R, Bujard H, Naldini L (2002) Robust and efficient regulation of transgene expression in vivo by improved tetracycline-dependent lentiviral vectors. Mol Ther 5:252–261

    Article  PubMed  CAS  Google Scholar 

  • Vigna E, Amendola M, Benedicenti F, Simmons AD, Follenzi A, Naldini L (2005) Efficient Tet-dependent expression of human factor IX in vivo by a new self-regulating lentiviral vector. Mol Ther 11:763–775

    Article  PubMed  CAS  Google Scholar 

  • Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 19:1067–1070

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Petravicz J, Breakefield XO (2003) Single HSV-amplicon vector mediates drug-induced gene expression via dimerizer system. Mol Ther 7:790–800

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X (2003) Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Ther 10:2105–2111

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J, Chen C, Li J, Xiao X (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 23:321–328

    Article  PubMed  CAS  Google Scholar 

  • Weber W, Fussenegger M (2004) Approaches for trigger-inducible viral transgene regulation in gene-based tissue engineering. Curr Opin Biotechnol 15:383–391

    Article  PubMed  CAS  Google Scholar 

  • Wiznerowicz M, Trono D (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference. J Virol 77:8957–8961

    Article  PubMed  CAS  Google Scholar 

  • Wiznerowicz M, Trono D (2005) Harnessing HIV for therapy, basic research and biotechnology. Trends Biotechnol 23:42–47

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72:2224–2232

    PubMed  CAS  Google Scholar 

  • Yan Z, Zhang Y, Duan D, Engelhardt JF (2000) Trans-splicing vectors expand the utility of adeno-associated virus for gene therapy. Proc Natl Acad Sci U S A 97:6716–6721

    Article  PubMed  CAS  Google Scholar 

  • Ye X, Rivera VM, Zoltick P, Cerasoli F Jr, Schnell MA, Gao G, Hughes JV, Gilman M, Wilson JM (1999) Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science 283:88–91

    Article  PubMed  CAS  Google Scholar 

  • Yee JK, Friedmann T, Burns JC (1994) Generation of high-titer pseudotyped retroviral vectors with very broad host range. Methods Cell Biol 43:99–112

    PubMed  CAS  Google Scholar 

  • Yu SF, von Ruden T, Kantoff PW, Garber C, Seiberg M, Ruther U, Anderson WF, Wagner EF, Gilboa E (1986) Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proc Natl Acad Sci U S A 83:3194–3198

    Article  PubMed  CAS  Google Scholar 

  • Zolotukhin S (2005) Production of recombinant adeno-associated virus vectors. Hum Gene Ther 16:551–557

    Article  PubMed  CAS  Google Scholar 

  • Zolotukhin S, Byrne BJ, Mason E, Zolotukhin I, Potter M, Chesnut K, Summerford C, Samulski RJ, Muzyczka N (1999) Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther 6:973–985

    Article  PubMed  CAS  Google Scholar 

  • Zou L, Yuan X, Zhou H, Lu H, Yang K (2001) Helper-dependent adenoviral vector-mediated gene transfer in aged rat brain. Hum Gene Ther 12:181–191

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D (1997) Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 15:871–875

    Article  PubMed  CAS  Google Scholar 

  • Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, Trono D (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Osten, P., Grinevich, V., Cetin, A. (2007). Viral Vectors: A Wide Range of Choices and High Levels of Service. In: Feil, R., Metzger, D. (eds) Conditional Mutagenesis: An Approach to Disease Models. Handbook of Experimental Pharmacology, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-35109-2_8

Download citation

Publish with us

Policies and ethics