Keywords
- Genetic Algorithm
- Probabilistic Algorithm
- Uniform Crossover
- Bayesian Optimization Algorithm
- Combine Complexity
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms (1993) 38-45
Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3 (1989) 493-530
Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor (1997) Also IlliGAL Report No. 97005
Kargupta, H.: SEARCH, polynomial complexity, and the fast messy genetic algorithm. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL (1995) Also IlliGAL Report No. 95008
Mühlenbein, H., Mahnig, T., Rodriguez, A.O.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(1999)215-247
Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA (1994)
Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. In Proceedings of the International Conference on Evolutionary Compu-tation 1998 (ICEC ’98), IEEE New York (1998) 523-528
De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In Mozer, M.C., et al. (Eds.): Advances in Neural Information Processing Systems. Vol. 9, MIT, Cambridge (1997)424
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)
Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm: I. continuous parameter optimization. Evolutionary Computation 1 (1993) 25-49
Syswerda, G.: Uniform crossover in genetic algorithms. In Schaffer, J.D., (Ed.): Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufman, San Mateo, CA (1989) 2-9
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)
Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)
Lobo, F.G., Harik, G.R.: Extended compact genetic algorithm in C++. IlliGAL Report No. 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL (1999)
Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, IL (2001) Also IlliGAL Report No. 2002004
Sastry, K., Goldberg, D.E.: Designing competent mutation operator via probabilistic model building of neighborhoods. In Deb, K.et al., (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2004, Springer, Berlin Heidelberg New York (2004) 114-125 Part II, LNCS 3103
Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Bayesian optimization algorithm, population sizing, and time to convergence. In Whitley, D.et al., (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2000, Morgan Kaufmann, San Francisco, CA (2000) 275-282
Pelikan, M., Sastry, K., Goldberg, D.E.: Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning 31(2003)221-258
Lima, C.F., Sastry, K., Goldberg, D.E., Lobo, F.G.: Combining competent crossover and mutation operators: A probabilistic model building approach. In Beyer, H.G.et al., (Eds.): Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference GECCO-2005, ACM, NY, USA (2005) 735-742
Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In Banzhaf, W., et al. (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Morgan Kaufmann, San Francisco, CA (1999)258-265
Lobo, F.G.: The parameter-less genetic algorithm: Rational and automated parameter selection for simplified genetic algorithm operation. PhD thesis, Universidade Nova de Lisboa, Portugal (2000) Also IlliGAL Report No. 2000030
Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbadna-Champaign, Urbana, IL (1999)
Ducheyne, E.I., De Wulf, R.R., De Baets, B.: Using linkage learning fo forest management planning. In Cantú-Paz, E., (Ed.): Late Breaking Papers at the Genetic and Evolutionary Computation Conference (GECCO2002), AAAI, New York (2002) 109-114
Sastry, K.: Efficient cluster optimization using extended compact genetic algorithm with seeded population. In Workshop Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, USA (2001) 222-225
Lipinski, P.: Evolutionaty data-mining methods in discovering stock market expertise from financial time series. PhD thesis, Université Louis Pasteur and University of Wroclaw, Strasbourg and Wroclaw (2004)
Butz, M.V., Pelikan, M., Llora, X., Goldberg, D.E.: Automated global structure extraction for effective local building block processing in XCS. IlliGAL Report No. 2005011, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL (2005)
Lobo, F.G., Lima, C.F., Mártires, H.: Massive parallelization of the compact genetic algorithm. In Ribeiro, B.et al., (Eds.): Adaptive and Natural Computing Algorithms. Springer Computer Series, Springer, Berlin Heidelberg New York (2005) 530-533
Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization Algorithm. In Banzhaf, W.et al., (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Morgan Kaufmann, San Francisco, CA (1999) 525-532
Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. Springer, Berlin Heidelberg New York (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Harik, G.R., Lobo, F.G., Sastry, K. (2006). Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA). In: Pelikan, M., Sastry, K., CantúPaz, E. (eds) Scalable Optimization via Probabilistic Modeling. Studies in Computational Intelligence, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34954-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-34954-9_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34953-2
Online ISBN: 978-3-540-34954-9
eBook Packages: EngineeringEngineering (R0)