Linkage Learning via Probabilistic Modeling in the Extended Compact Genetic Algorithm (ECGA)

  • Georges R. Harik
  • Fernando G. Lobo
  • Kumara Sastry

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Thierens, D., Goldberg, D.E.: Mixing in genetic algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms (1993) 38-45Google Scholar
  2. [2]
    Goldberg, D.E., Korb, B., Deb, K.: Messy genetic algorithms: Motivation, analysis and first results. Complex Systems 3 (1989) 493-530MATHMathSciNetGoogle Scholar
  3. [3]
    Harik, G.R.: Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms. PhD thesis, University of Michigan, Ann Arbor (1997) Also IlliGAL Report No. 97005Google Scholar
  4. [4]
    Kargupta, H.: SEARCH, polynomial complexity, and the fast messy genetic algorithm. PhD thesis, University of Illinois at Urbana-Champaign, Urbana, IL (1995) Also IlliGAL Report No. 95008Google Scholar
  5. [5]
    Mühlenbein, H., Mahnig, T., Rodriguez, A.O.: Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics 5(1999)215-247MATHCrossRefGoogle Scholar
  6. [6]
    Baluja, S.: Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical Report CMU-CS-94-163, Carnegie Mellon University, Pittsburgh, PA (1994)Google Scholar
  7. [7]
    Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. In Proceedings of the International Conference on Evolutionary Compu-tation 1998 (ICEC ’98), IEEE New York (1998) 523-528Google Scholar
  8. [8]
    De Bonet, J.S., Isbell, C.L., Viola, P.: MIMIC: Finding optima by estimating probability densities. In Mozer, M.C., et al. (Eds.): Advances in Neural Information Processing Systems. Vol. 9, MIT, Cambridge (1997)424Google Scholar
  9. [9]
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)MATHGoogle Scholar
  10. [10]
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)Google Scholar
  11. [11]
    Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic algorithm: I. continuous parameter optimization. Evolutionary Computation 1 (1993) 25-49CrossRefGoogle Scholar
  12. [12]
    Syswerda, G.: Uniform crossover in genetic algorithms. In Schaffer, J.D., (Ed.): Proceedings of the Third International Conference on Genetic Algorithms, Morgan Kaufman, San Mateo, CA (1989) 2-9Google Scholar
  13. [13]
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  14. [14]
    Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)MATHGoogle Scholar
  15. [15]
    Lobo, F.G., Harik, G.R.: Extended compact genetic algorithm in C++. IlliGAL Report No. 99016, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL (1999)Google Scholar
  16. [16]
    Sastry, K.: Evaluation-relaxation schemes for genetic and evolutionary algorithms. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, IL (2001) Also IlliGAL Report No. 2002004Google Scholar
  17. [17]
    Sastry, K., Goldberg, D.E.: Designing competent mutation operator via probabilistic model building of neighborhoods. In Deb, K.et al., (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2004, Springer, Berlin Heidelberg New York (2004) 114-125 Part II, LNCS 3103 Google Scholar
  18. [18]
    Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: Bayesian optimization algorithm, population sizing, and time to convergence. In Whitley, D.et al., (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-2000, Morgan Kaufmann, San Francisco, CA (2000) 275-282Google Scholar
  19. [19]
    Pelikan, M., Sastry, K., Goldberg, D.E.: Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning 31(2003)221-258CrossRefMathSciNetGoogle Scholar
  20. [20]
    Lima, C.F., Sastry, K., Goldberg, D.E., Lobo, F.G.: Combining competent crossover and mutation operators: A probabilistic model building approach. In Beyer, H.G.et al., (Eds.): Proceedings of the ACM SIGEVO Genetic and Evolutionary Computation Conference GECCO-2005, ACM, NY, USA (2005) 735-742CrossRefGoogle Scholar
  21. [21]
    Harik, G.R., Lobo, F.G.: A parameter-less genetic algorithm. In Banzhaf, W., et al. (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Morgan Kaufmann, San Francisco, CA (1999)258-265Google Scholar
  22. [22]
    Lobo, F.G.: The parameter-less genetic algorithm: Rational and automated parameter selection for simplified genetic algorithm operation. PhD thesis, Universidade Nova de Lisboa, Portugal (2000) Also IlliGAL Report No. 2000030Google Scholar
  23. [23]
    Harik, G.R.: Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbadna-Champaign, Urbana, IL (1999)Google Scholar
  24. [24]
    Ducheyne, E.I., De Wulf, R.R., De Baets, B.: Using linkage learning fo forest management planning. In Cantú-Paz, E., (Ed.): Late Breaking Papers at the Genetic and Evolutionary Computation Conference (GECCO2002), AAAI, New York (2002) 109-114Google Scholar
  25. [25]
    Sastry, K.: Efficient cluster optimization using extended compact genetic algorithm with seeded population. In Workshop Proceedings of the Genetic and Evolutionary Computation Conference, San Francisco, CA, USA (2001) 222-225Google Scholar
  26. [26]
    Lipinski, P.: Evolutionaty data-mining methods in discovering stock market expertise from financial time series. PhD thesis, Université Louis Pasteur and University of Wroclaw, Strasbourg and Wroclaw (2004)Google Scholar
  27. [27]
    Butz, M.V., Pelikan, M., Llora, X., Goldberg, D.E.: Automated global structure extraction for effective local building block processing in XCS. IlliGAL Report No. 2005011, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL (2005)Google Scholar
  28. [28]
    Lobo, F.G., Lima, C.F., Mártires, H.: Massive parallelization of the compact genetic algorithm. In Ribeiro, B.et al., (Eds.): Adaptive and Natural Computing Algorithms. Springer Computer Series, Springer, Berlin Heidelberg New York (2005) 530-533CrossRefGoogle Scholar
  29. [29]
    Pelikan, M., Goldberg, D.E., Cantú-Paz, E.: BOA: The Bayesian Optimization Algorithm. In Banzhaf, W.et al., (Eds.): Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, Morgan Kaufmann, San Francisco, CA (1999) 525-532Google Scholar
  30. [30]
    Pelikan, M.: Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. Springer, Berlin Heidelberg New York (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Georges R. Harik
    • 1
  • Fernando G. Lobo
    • 2
  • Kumara Sastry
    • 3
  1. 1.Google Inc. 1600 AmphitheatreParkway Mountain ViewUSA
  2. 2.University of Algarve DEEI-FCTFaroPortugal
  3. 3.University of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations