Multiobjective Estimation of Distribution Algorithms

  • Martin Pelikan
  • Kumara Sastry
  • David E. Goldberg
Part of the Studies in Computational Intelligence book series (SCI, volume 33)

Keywords

Multiobjective Optimization Candidate Solution Objective Space Distribution Algorithm Multiobjective Evolutionary Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ackley, D. H. (1987). An empirical study of bit vector function optimization. Genetic Algorithms and Simulated Annealing, pages 170-204Google Scholar
  2. [2]
    Ahn, C.-W. (2005). Theory, Design, and Application of Efficient Genetic and Evolutionary Algorithms. PhD thesis, Gwangju Institute of Science and Technology, Gwangju, Republic of KoreaGoogle Scholar
  3. [3]
    Ahn, C. W., Ramakrishna, R. S., and Goldberg, G. (2004). Real-coded Bayesian optimization algorithm: Bringing the strength of BOA into the continuous world. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004), pages 840-851Google Scholar
  4. [4]
    Bosman, P. A. N. and Thierens, D. (1999). Linkage information processing in distribution estimation algorithms. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), I:60-67Google Scholar
  5. [5]
    Chen, J.-H. (2004). Theory and applications of efficient multiobjective evolutionary algorithms. PhD thesis, Feng Chia University, Taichung, TaiwanGoogle Scholar
  6. [6]
    Coello Coello, C. A., Veldhuizen, D. A. V., and Lamont, G. B. (2001). Evolutionary algorithms for solving multiobjective problems. KluwerGoogle Scholar
  7. [7]
    Deb, K. (2001). Multiobjective optimization using evolutionary algorithms. Wiley, Chichester, UKGoogle Scholar
  8. [8]
    Deb, K. and Goldberg, D. E. (1991). Analyzing deception in trap functions. IlliGAL Report No. 91009, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, ILGoogle Scholar
  9. [9]
    Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2)Google Scholar
  10. [10]
    Goldberg, D. E. (2002). The design of innovation: Lessons from and for competent genetic algorithms, volume 7 of Genetic Algorithms and Evolutionary Computation. KluwerGoogle Scholar
  11. [11]
    Goldberg, D. E., Deb, K., and Thierens, D. (1993). Toward a better understanding of mixing in genetic algorithms. Journal of the Society of Instrument and Control Engineers, 32(1):10-16Google Scholar
  12. [12]
    Harik, G. (1999). Linkage learning via probabilistic modeling in the ECGA. IlliGAL Report No. 99010, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, ILGoogle Scholar
  13. [13]
    Harik, G., Cantú-Paz, E., Goldberg, D. E., and Miller, B. L. (1999). The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231-253CrossRefGoogle Scholar
  14. [15]
    Harik, G. R. (1995). Finding multimodal solutions using restricted tournament selection. Proceedings of the International Conference on Genetic Algorithms (ICGA-95), pages 24-31Google Scholar
  15. [15]
    Harik, G. R. and Goldberg, D. E. (1996). Learning linkage. Foundations of Genetic Algorithms, 4:247-262Google Scholar
  16. [16]
    Khan, N. (2003). Bayesian optimization algorithms for multiobjective and hierarchically difficult problems. Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, ILGoogle Scholar
  17. [17]
    Khan, N., Goldberg, D. E., and Pelikan, M. (2002). Multiobjective Bayesian optimization algorithm. IlliGAL Report No. 2002009, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL Google Scholar
  18. [18]
    Laumanns, M. and Ocenasek, J. (2002). Bayesian optimization algorithms for multi-objective optimization. Parallel Problem Solving from Nature, pages 298-307Google Scholar
  19. [19]
    MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the5th Symposium on Mathematics, Statistics and Probability, pages 281-297, Berkeley. University of California PressGoogle Scholar
  20. [20]
    Mahfoud, S. W. (1994). Population size and genetic drift in fitness sharing. Foundations of Genetic Algorithms, 3:185-224. (Also IlliGAL Report No. 94005)Google Scholar
  21. [25]
    Mühlenbein, H. and Paaß, G. (1996). From recombination of genes to the estimation of distributions I. Binary parameters. Parallel Problem Solving from Nature, pages 178-187Google Scholar
  22. [26]
    Mühlenbein, H. and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic algorithm: I. Continuous parameter optimization. Evolutionary Computation, 1(1):25-49CrossRefGoogle Scholar
  23. [23]
    Ocenasek, J. and Schwarz, J. (2002). Estimation of distribution algorithm for mixed continuous-discrete optimization problems. In 2nd Euro-International Symposium on Computational Intelligence, pages 227-232Google Scholar
  24. [29]
    Pelikan, M. (2005). Hierarchical Bayesian optimization algorithm: Toward a new generation of evolutionary algorithms. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  25. [30]
    Pelikan, M. and Goldberg, D. E. (2001). Escaping hierarchical traps with competent genetic algorithms. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 511-518Google Scholar
  26. [26]
    Pelikan, M. and Goldberg, D. E. (2003). A hierarchy machine: Learning to optimize from nature and humans. Complexity, 8(5):36-45CrossRefGoogle Scholar
  27. [27]
    Pelikan, M., Goldberg, D. E., and Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. Proceedings of the Genetic and Evo-lutionary Computation Conference (GECCO-99), I:525-532Google Scholar
  28. [28]
    Pelikan, M. and Mühlenbein, H. (1999). The bivariate marginal distrib-ution algorithm. Advances in Soft Computing—Engineering Design and Manufacturing, pages 521-535Google Scholar
  29. [29]
    Pelikan, M., Sastry, K., and Goldberg, D. E. (2002). Scalability of the Bayesian optimization algorithm. International Journal of Approximate Reasoning, 31(3):221-258MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Pelikan, M., Sastry, K., and Goldberg, D. E. (2005). Multiobjective hBOA, clustering, and scalability. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2005), pages 663-670Google Scholar
  31. [31]
    Reed, P. (2002). Striking the balance: Long-term groundwater monitoring design for multiple conflicting objectives. PhD thesis, University of Illinois, Urbana, ILGoogle Scholar
  32. [32]
    Sastry, K. and Goldberg, D. E. (2004). Designing competent mutation operators via probabilistic model building of neighborhoods. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2004), pages 114-125Google Scholar
  33. [33]
    Sastry, K., Pelikan, M., and Goldberg, D. E. (2005). Limits of scalability of multiobjective estimation of distribution algorithms. Proceedings of the Congress on Evolutionary Computation, pages 217-2224Google Scholar
  34. [34]
    Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6:461-464MATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Thierens, D. (1995). Analysis and design of genetic algorithms. PhD thesis, Katholieke Universiteit Leuven, Leuven, BelgiumGoogle Scholar
  36. [36]
    Thierens, D. (1999). Scalability problems of simple genetic algorithms. Evolutionary Computation, 7(4):331-352CrossRefGoogle Scholar
  37. [37]
    Thierens, D. and Bosman, P. A. N. (2001). Multi-objective mixture-based iterated density estimation evolutionary algorithms. Morgan Kaufmann, pages 663-670Google Scholar
  38. [38]
    Thierens, D. and Goldberg, D. (1994). Convergence models of genetic algorithm selection schemes. Parallel Problem Solving from Nature, pages 116-121Google Scholar
  39. [39]
    Thierens, D. and Goldberg, D. E. (1993). Mixing in genetic algorithms. Proceedings of the International Conference on Genetic Algorithms (ICGA-93), pages 38-45Google Scholar
  40. [40]
    Zitzler, E., Laumanns, M., and Thiele, L. (2001). SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Swiss Federal Institute of Technology (ETH) ZürichGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Pelikan
    • 1
  • Kumara Sastry
    • 2
  • David E. Goldberg
    • 3
  1. 1.University of Missouri at St. Louis, One University Blvd. St. LouisUSA
  2. 2.University of Illinois at Urbana-ChampaignUrbanaUSA
  3. 3.University of Illinois at Urbana-Champaign 104 S.USA

Personalised recommendations